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ABOUT YUMI DEADLY MATHS 

From 2000–09, researchers who are now part of the YuMi Deadly Centre (YDC) collaborated with principals and 

teachers predominantly from Aboriginal and Torres Strait Islander schools and occasionally from low socio-

economic status (SES) schools in a series of small projects to enhance student learning of mathematics. These 

projects tended to focus on a particular mathematics strand (e.g. whole-number numeration, operations, 

algebra, measurement) or on a particular part of schooling (e.g. middle school teachers, teacher aides, parents). 

They resulted in the development of specialist materials but not a complete mathematics program (these 

specialist materials can be accessed via the YDC website, http://ydc.qut.edu.au). 

In October 2009, YDC received funding from the Queensland Department of Education and Training through the 

Indigenous Schooling Support Unit, Central-Southern Queensland, to develop a train-the-trainer project, called 

the Teaching Indigenous Mathematics Education or TIME project. The aim of the project was to enhance the 

capacity of schools in Central and Southern Queensland Indigenous and low SES communities to teach 

mathematics effectively to their students. The project focused on Years P to 3 in 2010, Years 4 to 7 in 2011 and 

Years 7 to 9 in 2012, covering all mathematics strands in the Australian Curriculum: Number and Algebra, 

Measurement and Geometry, and Probability and Statistics. The work of the TIME project across these three 

years enabled YDC to develop a cohesive mathematics pedagogical framework, YuMi Deadly Maths, that covers 

all strands of the Australian Curriculum: Mathematics and now underpins all YDC projects. 

YuMi Deadly Maths (YDM) is designed to enhance mathematics learning outcomes, improve participation in 

higher mathematics subjects and tertiary courses, and improve employment and life chances. YDM is unique in 

its focus on creativity, structure and culture with regard to mathematics and on whole-of-school change with 

regard to implementation. It aims for the highest level of mathematics understanding and deep learning, through 

activity that engages students and involves teachers, parents and community. With a focus on big ideas, an 

emphasis on connecting mathematics topics, and a pedagogy that starts and finishes with students’ reality, it is 

effective for all students. It works successfully in different schools/communities as it is not a scripted program 

and encourages teachers to take account of the particular needs of their students. Being a train-the-trainer 

model, it can also offer long-term sustainability for schools. 

YDC believes that changing mathematics pedagogy will not improve mathematics learning unless accompanied 

by a whole-of-school program to challenge attendance and behaviour, encourage pride and self-belief, instil high 

expectations, and build local leadership and community involvement. YDC has been strongly influenced by the 

philosophy of the Stronger Smarter Institute (C. Sarra, 2003) which states that any school has the potential to 

rise to the challenge of successfully teaching their students. YDM is applicable to all schools and has extensive 

application to classrooms with high numbers of at-risk students. This is because the mathematics teaching and 

learning, school change and leadership, and contextualisation and cultural empowerment ideas that are 

advocated by YDC represent the best practice for all students. 

YDM is now available direct to schools face-to-face and online. Individual schools can fund YDM in their own 

classrooms (contact ydc@qut.edu.au or 07 3138 0035). This Algebra resource is part of the provision of YDM direct to 

schools and is the fourth in a series of resources that fully describe the YDM approach and pedagogical framework for 

Prep to Year 9. It focuses on teaching algebra, namely (a) repeating and growing patterns; (b) change and 

functions; (c) equivalence and equations; and (d) principles of arithmetic and algebra. It covers introducing 

unknown and variable, solving for unknowns, linear relationships, line graphs and algebraic computation 

including substitution, expansion and factorisation. It overviews the mathematics and describes classroom 

activities for Prep to Year 9. Because YDM is largely implemented within an action-research model, the resources 

undergo amendment and refinement as a result of school-based training and trialling. The ideas in this resource 

will be refined into the future.  

YDM underlies three projects available to schools: YDM Teacher Development Training (TDT) in the YDM 

pedagogy; YDM AIM training in remedial pedagogy to accelerate learning; and YDM MITI training in enrichment 

and extension pedagogy to build deep learning of powerful maths and increase participation in Years 11 and 12 

advanced maths subjects and tertiary entrance. 

mailto:ydc@qut.edu.au
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1 Purpose and Overview 

YuMi Deadly Mathematics (YDM) is based around (a) big ideas, connections and sequencing; and (b) the Reality–

Abstraction–Mathematics–Reflection (RAMR) model. It endeavours to achieve three goals: (a) reveal the structure 

of mathematics; (b) show how the symbols of mathematics tell stories about our everyday world; and (c) provide 

students with knowledge that they can access in real-world situations to help solve problems. YDM argues that the 

power of mathematics is based on connections and big ideas. For arithmetic (number and operations), these come 

from algebra and lead to algebra. The best way to learn mathematics is by using these connections and big ideas; 

that is, using algebraic thinking to generalise arithmetic. This needs to be developed early so that students can 

better understand number and operations and be better prepared for formal algebra.  

Algebra is the generalisation of arithmetic – it is the parts of arithmetic that hold for any number. Therefore, 

algebra is composed of big ideas. Thus, for YDM, this book is very important and shows how number and 

operations grow into structures that are very powerful and portable in their understanding of the world. 

However, the algebra of this book is not the algebra of 𝑥’s and 𝑦’s (although we do get to these symbols); it is 

interesting and motivating arithmetic that enables the development of big ideas and prepares for the 𝑥’s and 

𝑦’s. It is activities that not only teach the arithmetic that should be taught each year in an engaging way but also 

pre-empt and prepare for secondary algebra. 

The purpose of this book is to (a) reinforce arithmetic ideas from the YDM Number and Operations books; 

(b) extend the arithmetic ideas to generalities that make up algebra; and (c) develop understandings that are 

powerful and portable and can lead to high status professions. This book is designed to teach but also enrich the 

Australian Mathematics Curriculum. This bolstering does not result in new work, just a better way of developing 

teaching that reflects big ideas and, as we will argue below, is more in harmony with Aboriginal, Torres Strait 

Islander and low SES students.  

The book provides sequences of algebra activities to enable YDM to be effective in developing holistic algebraic 

thinking. However, this also results in a lot of interesting and motivating activities that assist learning of necessary 

number and operations work in the early years and, at the same time, pre-empt later algebra work. As will be 

discussed below, this leads to a more effective and powerful way to teach mathematics.  

The book is also based on the important distinction that, in arithmetic, 3 + 4 is the process and 7 is the product (or 

answer) while, for algebra, 𝑥 + 4 is both process and product – there is only the process. This means that arithmetic 

processes – concepts, strategies and principles – rather than arithmetic calculations are needed for algebra.  

This chapter looks at the nature of algebra and the nature of the most effective teaching of algebra. It covers 

connections and big ideas (section 1.1), sequencing (section 1.2), teaching and cultural implications (section 1.3), 

and overview of the book (section 1.4).  

1.1 Connections and big ideas 

This section overviews the role algebra plays in the structure of mathematics, describing its second level and 

holistic nature, how it is connected to the other strands within the structure of mathematics, and how it is based 

on a series of big ideas or principles that recur across Years P to 9.  

YDM believes that, through connections and big ideas, mathematics can be taught so that it is accessible as well 

as available (see YDM Overview book); that is, learnt as a rich schema containing knowledge of when and why 

as well as how. The connected nature of rich schema means that it has knowledge as a structure of connected 

nodes, which facilitates recall (it is easier to remember a structure than a collection of individual pieces of 

information) and problem solving (content knowledge that solves problems is usually peripheral, along a 
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connection from the content on which the problem is based). As described in the Overview book, the reality and 

mathematics components of the RAMR cycle are built, in part, around connections and generalisation to big 

ideas.  

1.1.1 Algebra as abstraction of abstraction (or generalisation of generalisation) 

Abstraction is a process by which a generality is determined from particular examples. In Western mathematics, 

an important abstraction is number. By experiencing, for instance, many examples of two items (e.g. 2 eyes, 2 

hands, 2 chairs, 2 children, and so on), learners generalise the language “two” and the symbol “2” as representing 

the “twoness” that is common to the examples. In a similar way, learners gradually build understanding of the 

language and symbols of all numbers.  

When numbers and their names and symbols are new to learners, meaning lies with the items. For example, 

2 + 3 is thought of as 2 items and 3 items. Counting all the items gives the solution 5 items. Thus 2 + 3 = 5 is 

thought of as 2 items joining 3 items to make 5 items. The focus of thinking is on the items. However, over time 

as more and more experience is gained, it becomes less necessary to think of items when we use numbers. After 

a while, 2 + 3 can be considered as equal to 5 without having to think of 2, 3 and 5 as specific items. The thinking 

simply happens on the symbols 2, 3 and 5. That is, the numbers become the focus or “objects” of thought; not 

the items that underlie them. At this point, the activity with real-world items has been abstracted to numbers 

and arithmetic. 

However, abstraction does not stop with number. After a further time, learners start to see that sometimes 

things are the same regardless of the size and type of the numbers. An example of this are “turnarounds” (what 

is mathematically called the commutative principle); that is, for any number, addition is the same regardless of 

the order in which numbers are added (e.g. 2 + 3 = 3 + 2; 656 + 172 = 172 + 656; 31⁄4 + 22⁄5 = 22⁄5 + 31⁄4, and so 

on). For this principle, letters such as 𝑥 and 𝑦 can be introduced as symbols for variables (i.e. to stand for “any 

number”) and used to represent the principle, that is, 𝑥 + 𝑦 = 𝑦 + 𝑥. (Note: The commutative principle can be 

extended to more than two numbers and to algebra, and it only holds for addition and multiplication.) 

Similarly to numbers, when variables and their names and symbols (letters) are new to learners, meaning lies 

with the numbers that the variables could represent. For example, 2𝑥 + 3 is thought of as two multiplied by “any 

number” plus 3. Solving 2𝑥 + 3 = 11 means thinking like “I have a number, I multiply it by two, add 3 and end 

up at 11; to solve it, I subtract the 3 from 11 (get 8) and divide the 8 by 2 (get 4), so 𝑥 = 4”. The focus of thinking 

is on the numbers. However, over time as more experience is gained, it becomes less necessary to think of 

variables as numbers. The thinking simply focuses on the letters (e.g.  2𝑥 + 3𝑥 = 5𝑥 without thinking of 𝑥 as a 

number). Thus, the variables become the focus or the “object” of thought. At this point, the numbers and 

arithmetic have been abstracted to variables and algebra. Overall, what this means is that the development 

from the real-world items to variables and algebra involves two steps: (1) abstraction from items to numbers and 

arithmetic, and (2) abstraction from numbers and arithmetic to variables and algebra. That is, algebra is an 

abstraction of an abstraction (see figure below). 

 

Interestingly, the process of abstraction involves gain and loss. Power is gained – we end up with knowledge that 

is much more portable and applies to a wider set of situations (i.e. the knowledge can be used in many situations). 

However, meaning is lost – the knowledge is highly symbolic and relationship back to the items it initially came 

Abstraction
  

Abstraction
  

books   money 
children   cars 

ITEM 
chairs   pencils 

counters 

356 

16 + 28  16 ÷ 4 

NUMBER 
3⁄4 × 5⁄7   7.4 

8.687234 

𝑥     𝑦 
2 𝑥 + 3 

VARIABLE 

𝑎,    𝑏,    𝑘 

 𝑥2 − 1 

 

Step 1: Items Step 2: Numbers and arithmetic Step 3: Variables and algebra 
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from becomes more difficult (i.e. the knowledge is in a form that appears disconnected from the real world). 

Therefore, it is important in both arithmetic and algebra to continually connect to the real world (as in the RAMR 

cycle), to show the role of symbols in mathematics, and to understand mathematics as a language. The 

Mathematics as Story Telling (MAST) approach is excellent for this (see Appendix A). 

1.1.2 Generalisation, big ideas and holistic teaching 

Recapping, the abstraction from arithmetic to algebra is an abstraction from particular activities represented by 

numbers and operations (i.e. arithmetic) to generalised activities represented by variables and operations (i.e. 

algebra). These generalised activities are interesting in that, to hold for all numbers, they must reflect structural 

things in arithmetic. In fact, they reflect what is called the underlying structure of arithmetic. This means, at its 

most powerful level, algebra reflects the “big ideas” in arithmetic – ideas that hold for whole numbers, fractions, 

and measures as well as variables.  

These big ideas are always present in what we do in arithmetic but are often undeveloped. A particular example 

may help in illustrating this. 

Example: The new mental computation approaches to computation are recommending that addition tasks 

such as 25 + 48 should be done by a strategy called compensation; that is, 25 + 48 is calculated by changing 

one of the numbers to something easy to add and then compensating for this change on the other number. 

Because 50 is easy to add, we could change 48 to 50 by adding 2 and compensate by changing 25 to 23 by 

subtracting 2. In this way, the addition can be easily calculated (i.e. 25 + 48 = 23 + 50 = 73).  

Most teachers stop here; they teach the strategy then support students to use it on other examples. To 

build big ideas, they need to go further. The important question that should be followed up is, “why 

does this work?”. 

The reason is that 23 = 25 − 2 and 50 = 48 + 2, so we are adding and subtracting 2. Since −2 and +2 are 

opposites or inverses, this is the same as adding 0, the identity (that which does not change anything). 

This means that the value of 25 + 48 does not change when it becomes 23 + 50 because all we are doing 

is adding 0. Putting in all the steps, what we have done is: 

Start           Finish 

25 + 48 = 25 + 48 + 0 = 25 + 48 − 2 + 2 = 25 − 2 + 48 + 2 = 23 + 50 = 73 

However, the big idea behind compensation is more than the −2+2 in this example. The big idea is that 

a first thing always equals a second thing as long as all we do is add 0 or something equivalent to 0. Thus 

to work out something complicated, all we have to do is find something the same as zero which changes 

it to something simple. This is an idea that can help us right across all mathematics (that is why it is 

called a big idea). For example,  

PROBLEM ZERO WORKING 

238 + 387 – 13 + 13 238 + 387 = 225 + 400 = 625 

4.8 + 2.7 + 3.6 + 0.2 + 0.3 − 0.5 4.8 + 2.7 + 3.6 = 5 + 3 + 3.1 = 11.1 

3h 48m + 2h 37m + 12m − 12m 3h 48m + 2h 37m = 4h + 2h 25m = 6h 25m 

a2 − b2 − ab + ab a2 − ab + ab − b2 = a(a−b) + b(a−b) = (a+b)(a−b) 

This example shows a general method for teaching difficult additions by changing them to simple additions by 

finding things equivalent to zero to add to them. It is an example of algebra in action because the method does 

not identify the actual numbers to be used to bring about the change to a simpler-form addition. Basically, the 

method says that any numbers will do as long as they add and subtract to 0. Thus, the example provides evidence 

for the power of big ideas, underlying mathematics structure, and teaching mathematics using algebra. Algebra 

teaching that is based on the structure of mathematics can enable students to learn big ideas that they can apply 

to particular examples right across mathematics.  
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Note: The other way to change without changing is to × 1. Combining + 0 and × 1 together gives a more generic 

way to show equals or equivalence (e.g. it includes equivalent fractions and proportion). This really big idea is 

called equivalence of expressions and is the basis of algebra.   

In many schools, the teaching of arithmetic tends to focus on mathematics as disconnected parts, teaching the 

next activity as if it is a completely new thing, and relying on the weight of years for students to put together all 

the bits to make a whole. We call this part-to-whole teaching. The example above shows us that algebra enables 

us to teach the more powerful mathematics where we learn a big idea and use it in particular situations. We call 

this whole-to-part teaching or holistic teaching. 

Thus, algebra based on the structure of mathematics gives us a chance to teach holistically from the big picture 

down to the special case.  

1.1.3 Connections, big ideas and structures 

As a consequence, YDM argues that knowledge of the structure of mathematics, particularly of connections and 

big ideas, can assist teachers to be effective and efficient in teaching content. This is because it enables teachers 

to:  

 determine what mathematics is important to teach – mathematics with many connections or based on 

big ideas is more important than mathematics with few connections or little use beyond the present;  

 link new mathematics ideas to existing known mathematics – mathematics that is connected to other 

mathematics or based on the one big idea is easier to recall and provides options in problem solving;  

 choose effective instructional materials, models and strategies – mathematics that is connected to other 

mathematics or based around a big idea commonly can be taught with similar materials, models and 

strategies; and  

 teach mathematics in a manner that makes it easier for later teachers to teach more advanced 

mathematics – by preparing the linkages to other ideas and the foundations for the big ideas later 

teachers will use. 

Thus it is essential that teachers know the mathematics that precedes and follows what they are teaching, 

because they are then able to build on the past and prepare for the future. Algebra is particularly important here. 

The two major structural connections for algebra are as follows: (a) algebra generalises arithmetic and so follows 

on and extends number and operations; and (b) algebra, like arithmetic, is part of measurement, probability and 

statistics, so algebra also has connections here (particularly in measurement where it relates to formulae). Thus, 

with input from geometry, we see that algebra is connected to all mathematics strands (as in figures below). 
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1.1.4 Algebraic big ideas 

Big ideas are mathematical ideas which reoccur and are useful in many strands/topics of mathematics and across 

many year levels. There are five types of big ideas: global, concept, principle, strategy and teaching. The major 

big ideas for algebra are listed under these headings as follows. 

1. Global. These are big ideas that apply very widely (some apply to all mathematics). An example is “symbols 

tell stories”, that is, symbols are a concise shorthand language for describing the world. This concept applies 

to arithmetic, algebra, geometry and all of mathematics. The algebra global big ideas are those from 

operations: symbols tell stories, relationship vs change, interpretation vs construction, accuracy vs 

exactness, and part-part-total, plus extra emphasis on unnumbered to numbered. 

2. Concept. These are meanings of central ideas, such as the concept of place value (also applies to mixed 

numbers and to measures) or the concept of subtraction (applies to all types of numbers and to algebra). 

Often there is more than one concept for each term (e.g. the part-of-a-whole concept of fraction and the 

division concept of fraction). Algebra concept big ideas are similar to those from operations but with some 

extra that are particular to algebra, as follows: 

 operation concepts – four operations, equals, order (> and <); and  

 new algebra concepts – generalisation, expression, equation, unknown, variable, linear, and function. 

3. Principle. These are relationships whose meaning is encapsulated in the relationship between the components 

of the idea not in the actual content focus of the idea, such as the formulae for the volume of a cylinder or the 

distributive principle (e.g. 24 × 3 = 20 × 3 + 4 × 3; 6 × 7 = 6 × 2 + 6 × 5). Again, algebra principle big ideas are 

similar to those from operations but with some extra that are particular to algebra, as follows: 

 operation principles (field principles) – closure, identity, inverse, commutativity, associativity, 

distributivity, compensation, equivalence, inverse relation, and triadic relationships;  

 equals/order principles – reflexivity/nonreflexivity, symmetry/antisymmetry, and transitivity; and  

 new principles – balance rule, backtracking, expansion, factorisation, changing subject of a formula. 

4. Strategy. These are general “rules of thumb” that point towards a solution of a problem or procedure. For 

example, the separation strategy for adding numbers of two or more digits (applies to subtracting mixed 

numbers, measures and variables as well as whole numbers), or the problem-solving strategy of make a 

drawing, diagram or graph (which is universally applicable to problems of any type). The strategies are similar 

to operations – separation, sequencing, and compensation. 

5. Teaching. These are big ideas for teaching mathematics (not for mathematics itself) that apply to a variety 

of, if not all, teaching situations. An example is the RAMR reflection strategy of “reversing”. For algebra, 

these are the same as for other areas and include the RAMR steps. This is elaborated further in section 1.3.  

A complete list of big ideas can be found in the YDM Big Ideas supplementary resource. 

1.2 Sequencing 

This section looks at how YDM advocates that algebra ideas be sequenced. The sequence relates to how the 

ideas are presented in this book through the sections of the book and the sequencing within and across these 

sections. It is based on the underlying ideas discussed below. 

1.2.1 Underlying ideas 

The sections of the book have been constructed based on the following points. 

1. Process of generalisation. Because algebra is the generalisation of arithmetic, students will have to be able 

to generalise – to be able to undertake the process of generalisation.  

This process of grasping a pattern from particular examples has the following attributes:  
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(a) there are two parts to generalisation – finding/determining the generalisation, and expressing the 

generalisation; and  

(b) there are four stages in students’ ability to express a generalisation from particular examples – using 

examples close to those that have been given (often using gestures to express themselves), using large 

numbers (called quasi-generalisation), using language, and using a variable (e.g. 𝑛).  

2. Change and relationship. There are two perspectives from which algebra can be viewed and approached – 

transformation (e.g. change and functions) and relationship (e.g. equivalence and equations). These have to be 

integrated so that both support each other. However, it is easier at the start to develop them separately. 

3. Sequencing arithmetic to algebra. This sequencing has to take into account the following. 

(a) There is a big difference between arithmetic (e.g. 3 + 4) and algebra (e.g. 𝑥 + 4) – arithmetic process 

(3 + 4) is separate from product or answer (7) while algebra process and product are the same (both 

𝑥 + 4). This means that the important ideas that sequence from arithmetic to algebra are concepts, 

principles and strategies not answers.  

(b) There are three general ways to develop the concept of variable as an unknown number: (i) using letters 

to express a generalisation for a pattern (or a function machine); (ii) solving changes and relationships in 

terms of unknowns; and (iii) relating numbers through formulae (e.g. volume of a cylinder is 𝜋𝑟2 × ℎ). 

(c) There are two sequences to be followed: (i) arithmetic  pre-algebra  full algebra; and (ii) one-

operation arithmetic  two-operation arithmetic and one-operation algebra  two-operation algebra. 

Pre-algebra is where we have an unknown or variable but find it through calculations only with numbers 

(e.g. 3𝑥 + 1 = 16 is solved by 16 − 1 = 15 ÷ 3 = 5). Full algebra is examples like 3𝑥 + 1 = 2𝑥 + 7; solving this 

requires calculating 3𝑥 − 2𝑥 which is an algebraic calculation. Two-operation arithmetic is when we 

have two operations and students think about it as two operations rather than a series of single 

operations. For example, 3 × 2 + 7 = 6 + 7 = 13 is seeing 3 × 2 + 7 as a series of single operations. In 

algebra, 3𝑥 + 7 cannot be solved this way so students need to learn to think of it as two operations. This 

can be encouraged with examples like: Solve (3 + 4) × 7 without adding 3 and 4. 

4. Generalisations themselves. Because algebra is the generalisation of arithmetic, it is important to know and 

understand common generalisations – to learn some of the important generalisations (i.e. concept, principle 

and strategy big ideas) that enable a smooth sequence from arithmetic to algebra, because they are in both 

topics. It is also important to develop new big ideas that cover the change from arithmetic to algebra such 

as the concept of unknown and concept of variable.  

5. Linearity and nonlinearity. Early primary activities are generally additive: I bought a shirt for some money 

and jeans for $50, how much did I pay altogether? This example can be represented by 𝑥 + 50. Upper primary 

becomes multiplicative: I bought 3 shirts for some money and jeans for $50, how much did I pay altogether? 

This can be represented by 3𝑥 + 50. Most upper primary and junior secondary algebra is of this form, known 

as linear because its graph is a straight line. However, primary and junior secondary mathematics has to 

prepare for, and begin doing, nonlinear algebra (where graphs are not straight lines) – notably squares 

(quadratics) and cubics. For example, the problem I bought a square piece of carpet and a rectangular piece 

(2m by 4m), how much area did I buy? is represented by a quadratic expression, that is, 𝑥2 + 8 square metres. 

Thus, nonlinearity will be part of the activities in this book. 

6. Teaching big ideas. In the early years, algebra is not about 𝑥’s and 𝑦’s; it is about doing and understanding 

arithmetic in a deeper way that builds arithmetic structure and prepares students for algebra. In the upper 

primary and early secondary years, it is about understanding the world algebraically, manipulating 

equations and expressions, solving equations, and expressing and representing functions. [Note: An 

expression is a number sentence without an equals sign, thus an equation is two expressions with an equals 

sign between them.] To achieve this, the book will focus on activities that are based on:  

(a) teaching from unnumbered to numbered activities, and then to variables; 

(b) finding and expressing generalisations (with the four stages of expression taken into account); and  
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(c) ensuring that abstract symbols such as 2𝑦 + 3  are given meaning in reality (which means a heavy 

emphasis on symbols  reality and reality  symbols).  

1.2.2 Major components of the book 

Following from the underlying ideas above, the book is built around activities that teach: (a) the process of 

generalisations; (b) the transformation and relationship perspectives (and the big ideas within them); and (c) the 

major generalisations (concept, principle and strategy big ideas) themselves. This will mean four teaching 

sections as follows. 

1. Patterns. Repeating and growing patterns will be used to teach generalising and to introduce the notion of 

variable. Patterns make students consider sequences of terms, both visual and numerical, and to determine 

the rule that determines, for example, the 10th term, the 100th term, the 256th term and the general term, 

namely, the 𝑛th term. Many curricula devalue the repeating pattern. However, as will be seen in this 

resource, repeating pattern activities enable powerful generalisations to be found. Nonlinear as well as 

linear examples will be included. 

2. Functions. Transformations (change) and functions will be studied to build transformational algebra which is 

based on function machines, input–output tables, arrow diagrams, and inverse. It will also lead to solving 

equations through backtracking, and to functions. Once again, there will be linear and nonlinear examples. 

3. Equations. Equivalence and equations will be studied to build relationship algebra which will be based on 

the balance principle and lead to solving for unknowns. Solutions will predominantly focus on linear 

equations as quadratics are introduced in Year 10, but some nonlinear outcomes will be considered. 

4. Arithmetic-algebra principles. Activities will be shown to develop the major principles that are a result of 

generalisation, namely, the principles of equals and order (called the equivalence and order principles), the 

number-size principles, and the principles of operations or arithmetic (called the field principles). Attention 

will also be focused on formulae which contain quadratic and cubic forms (e.g. area, volume). 

1.2.3 Sequencing 

The overall sequence for algebra is given in the figure below. It relates to the four sections of the book (see 1.2.2 

above): Repeating and Growing Patterns, Change and Functions, Equivalence and Equations (note the use of 

equivalence instead of equals), and Arithmetic-Algebra Principles.  
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It begins with patterns as training in the act of generalisation by finding pattern rules and relating to graphs. It 

then moves onto functions, starting from change rules in transformations, using real situations, tables and 

arrowmath notation before equations and graphs, solving for unknowns by the use of the balance rule. After this 

it moves to relationships that in arithmetic and algebra are represented predominantly by equations, solving 

them by the use of the balance rule. The sequence is completed by focusing on arithmetic and algebraic 

principles and extending these to methods such as substitution, expansion and factorisation. 

The sequence begins simply, in a separated manner, but by the time junior secondary is reached, the components 

are more integrated and connected to allow patterns, functions and equivalence all to be expressed in the same 

way (by equations), and for results to cover nonlinear as well as linear relationships and changes.  

Within each of the sections the algebraic ideas will be sequenced as in the figure above. The sequencing will 

begin with unnumbered activities as these enable the big ideas to develop, move on to numbers and arithmetic 

situations and then move to generalised situations. More detailed sequences are given in Chapters 2 to 5. 

The overall end point of algebra is modelling as well as manipulation of symbolics. Computers and special 

calculators can do the manipulations to simplify and solve for unknowns – what is important, like in arithmetic, 

is to apply the knowledge to the world and solve problems – to model the world algebraically. This is important 

because most students cannot see the relevance of, say, 𝑥 + 𝑦 = 7 to their everyday world. Yet, with 

understanding it is very relevant. It could mean that you bought two things at a shop for $7. Then the cost of the 

first thing (𝑥) plus the cost of the second thing (𝑦) is equal to $7. This gives parameters in which thinking can be 

used. Suppose we were working in whole dollars. Then the first thing could cost $1 and the second cost $6, or $2 

and $5, or $3 and $4, and so on. Thus we need to teach students the role of symbols in telling stories (see 

Appendix A).  

1.3 Teaching and cultural implications 

This section covers implications for teaching and culture. More emphasis than normal falls on this section 

because algebra is holistic and best taught whole to part and this is similar to the cultural learning style of 

Aboriginal and Torres Strait Islander people (and low SES students). Thus, two outcomes coalesce: first, algebra 

understanding is best facilitated through big ideas, and second, this approach to teaching facilitates Aboriginal, 

Torres Strait Islander and low SES learning of algebra, and is a vehicle for mathematics understanding.  

1.3.1 Teaching, algebra and big ideas 

Two important points to note about big ideas are that, firstly, they are generalisations of particular ideas that 

applied initially to the particular numbers at which we were looking. Secondly, because they encompass many 

numbers and topics, they are holistic in their focus.  

The principle big ideas are particularly powerful for both arithmetic and algebra; for example, the “turnaround” 

principle. This is an important principle for basic number facts; it says that a first number add a second number 

is the same as its reverse (the second number add the first number – e.g. 3 + 5 = 5 + 3). However, this principle 

also holds for large numbers (e.g. 3789 + 2094 = 2094 + 3789), fractions (e.g. 2⁄5 + 7⁄8 = 7⁄8 + 2⁄5), decimals (e.g. 

4.39 + 6.68 = 6.68 + 4.39), algebra (e.g. 𝑎 + 𝑏 = 𝑏 + 𝑎), and functions (e.g. 𝑓 + 𝑔 = 𝑔 + 𝑓 where 𝑓(𝑦) = 2𝑦 − 1 and 

𝑔(𝑦) = 3𝑦 − 2). Thus, as a mathematical idea, “turnaround” is a big idea because it applies to any content and 

across Years P to 9. As such, it has a special name within the structure of mathematics – the commutative 

principle. 

Thus algebra and big ideas are almost synonymous. Both can be seen to reoccur across many topics and strands, 

be generalisations and be holistic in focus. 

As a consequence, algebraic thinking and ideas, along with big ideas and generalities, are a very important part 

of mathematics because they have the following important attributes: 
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 they last learners many years;  

 they connect many mathematical ideas;  

 they cover many mathematical situations;  

 they reduce the amount of mathematics that has to be learnt; and 

 they are holistic. 

Therefore, algebra is also very important and powerful in terms of teaching and learning mathematics in general. 

This can be seen in the examples in Appendix B.  

1.3.2 Big ideas that affect algebra teaching and learning 

A global big idea that is very important to how we learn and use algebra is relationship vs transformation. Let us 

consider three examples. 

The first is potatoes being cooked into chips. We can consider this as a relationship, the potatoes and chips are 

the same food; we can consider this as a change, the potatoes have been changed to chips by cooking. This gives 

rise to two different ways of thinking about, and two different symbol organisations for, one mathematical idea 

– same as and equals, and change and arrow, as below.  

 

The second is a balloon being blown up. The half-filled balloon and the fully filled balloon can be considered to 

be related because they are the same shape although different in size. However, from another perspective, the 

little balloon could be considered to have been changed into the large by being blown into. Again we have two 

different symbols and two different ways of thinking (see below) for one mathematical idea.  

 

The third is addition. Consider 2 and 3. The joining of 3 to 2 could be considered as a relationship, 2 and 3 relate to 

5 by addition. However, it can also be considered as a change, 2 can be changed to 5 by the action of +3. Again, one 

mathematical idea but two ways of thinking and two different forms of symbols, as seen below. 

 

So, the everyday activities such as addition can be thought of in two ways and result in two symbol systems even 

though they only represent one mathematical idea. One way uses equations to express relationships such as that 

between 2, 3, 5 and addition; the other way uses arrows to show change such as how 2 can be changed to 5 by 

addition of 3. The first way leads to algebraic equations; the second to algebraic functions. 

Thus, YDC advocates that an effective way to learn algebra is through both relationship and transformation 

perspectives. For example, when we are algebraically describing or modelling a shopping situation such as the 

cost of a coat is $1 more than double the cost of the pants, we can: (a) think of the situation as a relationship and 

express it as an equation, the value of the coat (𝑦) is equal to the value of the pants (𝑥) multiplied by 2 plus 1, 
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that is, 𝑦 = 2𝑥 + 1 (in formal equation notation); and (b) think of the situation as a transformation and express 

it as a function, the value of the pants (𝑦) is found by doubling the price of the pants (𝑥) and adding a dollar, that 

is, 𝑥 
×2
→  

+1
→  𝑦 (in arrowmath notation).  

As well, there are three important big ideas within the relationship and transformation perspectives:  

(a) within relationship, the big idea is the balance principle – that to keep an equation equal, whatever is 

done to one side of the equation has to be done to the other side;  

(b) within transformation, the big idea is the backtracking principle (based on inverse) – that change can 

be undone by reversing the operations in reverse order (this is covered in Appendix B); and  

(c) within both perspectives, teaching and learning should focus on unnumbered situations before 

numbered situations. 

Finally, because algebra is the generalisation of arithmetic, it will be necessary to focus on the development of 

the new concept of variable as standing for any number and on the big ideas from arithmetic that carry through 

into algebra (e.g. concepts of operations and equals, principles associated with operations and equals). 

As a result of the above, YDC has structured the teaching ideas in this book to ensure that students understand:  

 the relationship and transformation perspectives of algebra,  

 the balance and backtracking big ideas,  

 unnumbered before numbered pedagogy, and  

 the equals and operations big ideas (because algebra is a generalisation of arithmetic).  

There is one more aspect to take into account. Most of the work done in Years P to 9 with algebra is linear in that 

it relates/changes in terms of multiples or divisors of unknowns, not squares or cubes of unknowns. This means 

it is restricted to equations of type 3𝑥 − 2 =
𝑥

2
+ 1. However, by Year 9, there are some nonlinear relationships, 

for example, area of a rectangle or volume of a cube. This means that we have to take into account some 

nonlinear activities to go with the predominantly linear activities. This will affect the end of each chapter in this 

book.  

1.3.3 Indigenous culture, mathematics and holistic teaching 

A danger in teaching Western mathematics (and science) to Aboriginal and Torres Strait Islander people is that 

teachers can make their teaching become a celebration of the growth and success of Western or European 

knowledge. It is particularly easy to represent Western knowledge as successful because it can be presented as 

continually advancing in terms of technology (e.g. cars, planes, rockets, computers) and as coming to dominate 

the planet. However, this same knowledge has been particularly unsuccessful in handling the intransigent and 

long-term problems of the planet such as destruction of the environment, poverty, war and violence, and climate 

change.  

Teaching that presents mathematics as a celebration of this “linearly advancing technological process” can 

marginalise Aboriginal and Torres Strait Islander people, undermine the significance of their Indigenous identity 

and devalue Indigenous knowledges and cultures as simplistic societies (Matthews, 2003). Western mathematics 

places importance on number and arithmetic because this is where linear advancement in technological progress 

starts and what drives its progress. It can be argued that the invention of arithmetic was a consequence of a 

society in which material assets were considered more important than the individual. In Indigenous society, 

without the need to work out one’s assets in fine detail, number was not developed to the same level as in 

Western culture. However, this does not mean that Aboriginal and Torres Strait Islander cultures do not have 

their own mathematical knowledge.  

Considerations of Indigenous knowledge of mathematics require recognition and respect of such knowledge, 

which should, in turn, be reflected in the teaching and learning of mathematics to students. For example, as 

argued by Matthews (2003), Yolngu children, from a young age, have a good understanding of their kinship 
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system which governs the Yolngu way of life. This system is very complex and relies on cyclical and recursive 

patterns. Such patterns can be found within numbers themselves and other areas of mathematics (Jones, 

Kershaw & Sparrow, 1996; Divola & Wells, 1991) and forms a good basis for Yolngu children to start their journey 

into Western mathematics. As most Aboriginal and Torres Strait Islander knowledge systems are based on 

interactions within the environment and groups of people, they can form algebraic systems because they can 

relate numbers in flexible ways.  

Traditionally, in Australian schools, mathematics and its teaching both reflect Western culture. Therefore, 

differences in mathematics performance can stem from a different cultural view of what it means to be good at 

mathematics. Commonly, in most school environments, this is determined by gauging students’ performance 

levels from test items that reflect non-Indigenous learning styles, namely solving meaningless problems by pen-

and-paper means. In those problems, there are often marked differences in errors between Indigenous and non-

Indigenous students. One case study of Indigenous students’ errors found that underperformance tended to 

reflect mistakes in procedures rather than understanding, reflecting the position of Grant (1998) that Indigenous 

students see the whole rather than the parts.  

Therefore, it is important to teach mathematics on an equitable basis with Western mathematics reflecting “both 

ways” approaches (Ezeife, 2002). Western teaching is traditionally compartmentalised, resulting in an education 

system in schools (whether oral or written) focusing on the details of the individual parts rather than the whole 

and relationships within the whole. By contrast, Indigenous students tend to be holistic learners, appreciating 

overviews of subjects and conscious linking of ideas (Grant, 1998). In fact, Indigenous people have been 

characterised as belonging to “high-context culture groups” (Ezeife, 2002) which are characterised by a holistic 

(top-down) approach to information processing in which meaning is “extracted” from the environment and the 

situation. Low-context cultures use a linear, sequential building block (bottom-up) approach to information 

processing in which meaning is constructed (Ezeife, 2002).  

What this means is that students who use holistic thought processing are more likely to be disadvantaged in 

mainstream mathematics classrooms. This is because Westernised mathematics is largely presented as 

hierarchical and broken into parts with minimal connections made between concepts and with the students’ 

culture and community. It potentially conflicts with how they learn. If this is to change, curriculum and 

assessment need to be made more culturally sensitive and community oriented (QUT YuMi Deadly Centre, 2009).  

Thus, we have a confluence of results. Indigenous students are high context and learn best with holistic teaching 

(Grant, 1998; Ezeife, 2002). Mathematics in its most powerful form is based on structural understanding that is 

learnt best by holistic teaching. Algebra is the component of mathematics that is based on mathematical 

structure, and is capable of presenting mathematics holistically.  

As a consequence, it seems that algebra is the form of mathematics that is most in harmony with Indigenous 

culture and learning style. Because of this, algebra understanding should be a strength of Indigenous students if 

it is taught through pattern and structure (rather than through sequential teaching of rules and algorithms). It 

seems likely that algebra is a subject in which Aboriginal and Torres Strait Islander students should excel. Finally, 

because of its relationship with arithmetic, this understanding of algebra should enable enhanced understanding 

of and proficiency with arithmetic.  

1.3.4 Generic teaching strategies 

YDM sees mathematics teaching as comprising three components – technical (handling materials), domain (the 

particular pedagogies need for individual topics) and generic (pedagogies that work for all mathematics). 

Interestingly, and fortunately, the domain section is not as complicated as it could be because mathematical 

ideas that are structurally similar can be taught by similar methods. For example, fractions and division are similar 

and both are taught by partitioning sets into equal parts – except that the set is seen as one whole for fractions 

and as a collection of objects for division. There are also some generic teaching methods that hold for any topic.  
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The RAMR framework (see the figure below) is very useful for algebra because of the generic teaching ideas 

contained in the framework. For a start, it grounds all mathematics in reality and provides many opportunities for 

connections, flexibility, reversing, generalisations and changing parameters, as well as body  hand  mind. The 

idea is to use the framework and all its components throughout the years of schooling and this will help prevent 

learning from collapsing back into symbol manipulation and the quest for answers by following procedures.  

 

Within the chapters of this book, many activities for teaching algebra are provided. Although they are based on 

the RAMR model of reality, abstraction, mathematics, and reflection, they are not presented in the formal RAMR 

framework format used in the other YDM books. Rather, the focus is on the sequencing of the activities across 

Years P to 9 and the sequence of steps that should be followed within each activity. It is expected that teachers 

will create their own RAMR lessons when teaching these activities. Section 1.4 provides more information on the 

components of the RAMR model that are particularly important in algebra teaching. 

1.3.5 Cultural implications for teaching algebra 

There are two implications for algebra from the discussion above: (a) what is the best way to teach it, and (b) 

what is the best way to teach it to Aboriginal and Torres Strait Islander and low SES students? 

1. Teaching algebra. The power of mathematics lies in the structured way it relates to everyday life. Knowledge 

of these structures gives learners the ability to apply mathematics to a wide range of issues and problems. This 

is best achieved if the knowledge is in its most generalised form, which is algebraic form. Thus, the most 

 
 Identify local cultural and environmental 

knowledge that can be used to introduce the 
idea. 

 Ensure existing knowledge prerequisite to the 
idea is known. 

 Construct kinaesthetic activities that introduce 
the idea (and are relevant in terms of local 
experience). 

 
 Develop a sequence of representational 

activities (physical-virtual-pictorial-language-
symbols) that develop meaning for the 
mathematical idea. 

 Develop two-way connections between reality, 
representational activities, and mental models 
through body  hand  mind activities. 

 Allow opportunities to create own 
representations, including language and 
symbols. 

 
 Enable students to appropriate and understand 

the formal language and symbols for the 
mathematical idea. 

 Facilitate students’ practice to become familiar 
with all aspects of the idea. 

 Construct activities to connect the idea to other 
mathematical ideas. 

 

 

 

 Lead discussion of idea in terms of reality to 
enable students to validate and justify their own 
knowledge. 

 Set problems that apply the idea back to reality. 

 Organise activities so that students can extend 
the idea (use reflective strategies – being 
flexible, generalising, reversing, and changing 
parameters). 

 
 

Reflection 

RAMR 
framework 
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effective way to present mathematical knowledge is through algebra. However, any topic of mathematics can 

be presented instrumentally (as a set of rules). Although algebra is the direction for power in mathematics, it 

has to be algebra that is presented structurally, showing the generalisations that can be used in many examples. 

Powerful algebra teaching focuses on extending arithmetic to generalisations that can apply across all 

arithmetic. That is, teaching that builds holistic understandings of structure that can then be applied to 

particular instances (from the whole to the part). If students are fortunate enough to gain this structured 

understanding of mathematics, the subject becomes easy. This is because it is no longer seen as a never-ending 

collection of rules and procedures but rather the reapplication of a few big ideas. 

2. Teaching Indigenous students. Aboriginal and Torres Strait Islander students tend to be high context. Their 

learning style is best met by teaching that presents mathematics structurally without the trappings of 

Western culture. Powerful Indigenous teaching is therefore holistic, from the whole to the part. As Ezeife 

(2002) and Grant (1998) argue, Indigenous students should flourish in situations where teaching is holistic 

(from the whole to the parts). Thus, holistic algebra teaching has two positive outcomes for Indigenous 

students: (a) it teaches a powerful form of mathematics, and (b) it teaches it in a way that is in harmony with 

Indigenous learning styles. Algebra taught structurally, then, is something in which Indigenous students 

should excel. However, this is just a general finding. What does this mean in practice for the teaching of 

algebra? It means that we will not be teaching rules for manipulating letters. Letters and algebraic 

expressions and equations will be understood in terms of everyday life and algebraic ideas will be 

generalised from arithmetic. This will mean a lesser focus on algorithms and rules, and a greater focus on 

generalisations and applications to everyday life. 

3. Teaching low SES students. Interestingly, holistic teaching is also positive for low SES students. Three 

reasons are worth noting. First, low SES students tend to have strengths with intuitive-holistic and visual-

spatial teaching approaches rather than verbal-logical approaches. Thus, an algebraic focus on teaching 

mathematics should also be positive for low SES students. Second, many low SES students in Australia are 

immigrants and refugees from cultures not dissimilar to Aboriginal and Torres Strait Islander cultures. They 

are also advantaged by holistic algebraic approaches to teaching mathematics. Third, many low SES students 

have themselves experienced failure in traditional mathematics teaching, and so have members of their 

families. This results in learned helplessness with regard to mathematics and what is called mathaphobia, 

where students believe that no effort on their part will enable them to learn mathematics. Holistic-based 

algebraically-oriented teaching of mathematics is sufficiently different that students may not apply their 

phobia to it – particularly if taught actively and from reality as in the RAMR model. 

Thus, for the students that YDM was developed for, algebra is the key for mathematics success – not 𝑥’s and 𝑦’s 

but the generalised holistic thinking that is the basis of it. 

1.4 Overview of book 

This book consists of five chapters and two appendices: 

Chapter 1: Purpose and overview – describing purpose, connections and big ideas, sequencing, and teaching 

and cultural implications; 

Chapter 2: Repeating and growing patterns – describing activities for developing the ability to generalise for 

repeating and growing patterns and using this to introduce variable; 

Chapter 3: Change and functions – showing how function machines develop the notion of inverse and can 

be used to build the concept of variable and backtracking to solve for unknowns;  

Chapter 4: Equivalence and equations – showing how understandings of equivalence (equals) and equations 

can be developed and used to teach the balance principle and solve equations for unknowns; 

Chapter 5: Arithmetic-algebra principles – showing how the major generalisations, the principles for equals 

and operations, can be taught; 
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Appendix A: Mathematics as Story Telling (MAST); and 

Appendix B: The power of algebraic big ideas. 

The instruction for the ideas within the chapters is based on the RAMR model (reality, abstraction, mathematics, 

and reflection). However, like all strands, there are particular components of the RAMR model that should be 

highlighted because they have particular importance in algebra. Four of these are as follows.  

1. Initial abstraction as unnumbered. Within most of the chapters, instruction begins with unnumbered 

activities. This is because students appear more easily able to look for patterns and generalisations in 

unnumbered activities than in numbered situations, where they tend to look for answers. Thus, the activities 

in this book, as far as possible, start with unnumbered activities, then move to numbered activities and then 

to variable activities. This involves generalisation in which students progress from working with small 

numbers, to large numbers (this is called quasi-generalisation), everyday language, and finally, formally with 

variables.  

The figure below illustrates this diagrammatically.  

         Unnumbered activities 
                Small to large numbers 
         Numbered activities GENERALISATION        Everyday language 
                 Variables 

         Variable activities 

2. Connecting symbols and reality. As also discussed earlier, the relationship between everyday life and 

algebra is a two-step abstraction that goes through arithmetic (see below). This means, first, that the act of 

generalising is at the core of algebra and proficiency must be built in both the act of generalising (how to 

generalise) and the products of generalisation (the mathematical ideas/principles that result from 

generalising). Second, it means that the symbols of algebra, notably the letters, are far removed from 

everyday life and their meaning must be built with care through: (a) continuous connections being made 

between symbols and real-world stories; and (b) using sequences of materials and activities that become 

progressively more abstract.  

 

3. Pre-empting and prerequisites. The figure above also explains why algebra is difficult for many students. It 

shows that the step from everyday life (reality) to arithmetic must be well built because the step from 

arithmetic to algebra is built upon it. It is very difficult for students to invent stories for 2𝑥 − 1, if they cannot 

invent stories for 2 × 5 − 1.  

4. Generalising and reversing. As algebra is generalisation of arithmetic, the reflection step of generalising is 

crucial – all activities should be discussed in terms of what they mean in general – what would “any number” 

do? As well, to reach the generalisation often involves many steps – always reverse these steps in the next 

activity.  
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2 Repeating and Growing Patterns 

There are two pattern types to explore in algebra to promote early algebraic thinking and introduce the notion 

of variable, namely repeating and growing patterns. Repeating patterns are simplest for introducing activities 

that engage students in noticing and identifying patterns, whereas growing patterns introduce more complex 

relationships between terms. Thus we begin with repeating and then show how these can be extended to 

growing patterns. However, as we show, repeating patterns can be used to introduce variable as well as 

equivalent fractions and ratio.  

There are two types of growing patterns, linear and 

nonlinear. We will be focusing on linear growing patterns 

but there is a section on nonlinear at the end of this chapter. 

In linear growing patterns we focus on pattern rules 

(sequential and position) and on the techniques for 

identifying generalisation (using visuals and tables). After 

this, patterns are used to introduce variable, equations and 

graphs, with particular emphasis on the relationship 

between growing part and constant part and coefficient of 

variable/slope and constant term/𝑦-intercept. As well, 

there is some time spent on patterns in other strands of 

mathematics that can lead to deeper understandings of 

those strands – this is particularly in terms of number and 

operations. This sequence is diagrammatically summarised 

on the right.  

The sequence for patterns and this chapter is to look first at the mathematics content in terms of pattern types, 

sequences and materials (section 2.1), followed by very early repeating patterning (section 2.2), early to middle 

primary linear growing patterning (section 2.3), later linear growing and repeating patterning and applications to 

graphing (section 2.4) and later nonlinear patterning (section 2.5).  

2.1 Pattern types, sequences and materials 

In this section, we cover and summarise all the components of this chapter. 

2.1.1 Repeating patterns 

Repeating patterns are linear sequences of objects, pictures or numbers that form a pattern because a section 

of them repeats; for example: 

   0 x 0 x 0 x 0 x 0 x 0  repeating part:  0 x 

   o I I o I I o I I o I I o I  repeating part:  o I I 

The crucial skill is to be able to go from pattern to repeating part and repeating part to pattern. The normal 

sequence of activities is as follows: 

(a) copying, continuing and completing repeating patterns and identifying repeating part; 

(b) constructing repeating patterns (without direction and when given a repeating part); 

(c) finding what object is at a position or finding positions for objects (e.g. what object is the 13th term?; 

what terms are square red counters?); 

Linear growing patterns 
(sequential/position rules)

Repeating patterns 
(identify repeat/determine position)

Visuals and tables methods

Variable/Generalising  
pattern rules

Variable/Generalising 
position and repeats

Nonlinear 
growing patterns

Equations/Graphs
Linear relationships
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(d) breaking pattern into repeats and connecting to growing patterns, for example: 

  0 x 0 x 0 x 0 x …    0x  0x  0x  0x  …    0x  0xx  0xxx  0xxxx  … ; 

(e) representing repeats on tables and generalising tabled numbers to variables; and  

(f) using tables of repeats to introduce fractions, equivalent fractions, ratio and equivalent ratio (proportion). 

The common materials to be used consist of objects of different colour, size, shape, and so on, with any one or 

more attributes determining the basis of the pattern, plus small numbered cards (1 to 5), tables, and calculators. 

It is useful to have magnetic copies of these objects/cards that can be placed on whiteboards. 

The major ideas to be developed from repeating patters are: (a) generalisation, (b) representing generalisations 

with variables (introduction to algebra), (c) fractions and ratio, and (d) equivalent fraction and ratio. 

2.1.2 Linear growing patterns 

Growing patterns are series of terms where there is a fixed part and a growing part 

as on right. If the growing amount is always the same, then it is linear. In the pattern 

on the right, 0 is fixed and X is growing by one each time. 

When the growing part does not grow (grows by zero), you have a repeating pattern 

as on right. 

It is possible for the fixed part to not exist (to be zero) as on right. 

Pattern rules and graphing 

The focus on growing patterns is to identify what is called the pattern rule which 

describes the growth. For patterns like that on the right, there are two types of rules.  

(a) Sequential: the 𝑛th term is the previous term + 1. 

(b) Position: the 𝑛th term is 1 + 𝑛, since: 

  1st term is  1 O and 1 X  (1 + 1)  

  2nd term is  1 O and 2 Xs  (1 + 2) 

  3rd term is 1 O and 3 Xs (1 + 3) 

  and so on 

Position rules enable linear growing patterns to be used to 

introduce the notion of variable. They also can be used to plot 

graphs as straight lines. When this is done, a relation exists 

between the graph, the growing part and the fixed part – the 

growing part is the slope and the fixed part is the 𝑦 intercept (for 

𝑦 = 𝑥 + 1, slope is 1 and 𝑦 intercept is 1) as shown on right. 

Note: In previous times, sequential pattern rules (e.g. “1 more”) 

were considered to be trivial. With the growth of computers this 

has changed. In the example above, the position pattern rule gives 

the function 𝑦 = 𝑥 + 1 but the sequential pattern rule gives the 

function 𝑦(1) = 2, 𝑦(𝑘 + 1) = 𝑦(𝑘) + 1. This is now how 

functions are represented in programming. 

  

1 

2 

3 

4 

5 

6 

0        1         2         3         4         5 

0 

𝒚 = 𝒙 + 𝟏 

Slope = 1 

𝑦 intercept = 1 

𝑥 

𝑦 
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Reversing 

For all activities, it is crucial to go from pattern to pattern rule and pattern rule to pattern. The normal sequence 

of activities is as follows: 

(a) copying, continuing and completing growing patterns; 

(b) constructing growing patterns (without direction and when given a pattern rule); 

(c) finding what objects are at a position and what position has certain objects (e.g. what term has the 20th 

red circle?); 

(d) identifying growing and fixed parts of visual patterns; 

(e) identifying pattern rules (sequential and position) from visual patterns with and without use of number 

tables; 

(f) identifying growing and fixed parts and pattern rule from number tables; 

(g) identifying different versions of pattern rules (leads to equivalence of expressions – number sentences 

with no equals), and justifying why it works for all terms; 

(h) using pattern rules to introduce variable and algebraic expression; and  

(i) representing patterns with graphs and relating growing and fixed parts to slope and 𝑦 intercept of graph 

respectively. 

Activities, materials and major ideas 

Students gain a better understanding of patterning if given experience finding number pattern rules without 

using a table. An example of this is below. (Note: We are starting the patterns from 0 so as to accommodate the 

𝑦-intercept in later years.) 

Example 

Consider the following: 

 X XX XXX XXXX XXXXX 

X XX XXX XXXX XXXXX XXXXXX 

0  1   2    3     4 5 

The fixed part is the one X from term 0, the growing part is two extra Xs each new term. In a table it is easy to see 

that term 0 is 1, term 1 is 3, term 2 is 5, term 3 is 7 and so on, leading to a pattern of 2𝑛 + 1 for the 𝑛th term. 

However, if we stay with visuals, then more is possible. The visuals can be interpreted as  

 two rows, the top is 𝑛 and the bottom is 𝑛 + 1, making the pattern 𝑛 + 𝑛 + 1; 

 a double row of length 𝑛 and an extra X, making the pattern 2𝑛 + 1; and  

 a double row of length 𝑛 + 1 with a missing X, making the pattern 2(𝑛 + 1) − 1.  

The focus on visuals gives the students an understanding that there are different equivalent algebraic expressions 

for a pattern rule. The different interpretations of the visuals also provide arguments to support that the pattern 

rule holds for all items; they provide justification. 

The common materials to be used consist of numbers or objects of different colour, size, shape, and so on, with 

the number of objects (or the numbers themselves) determining the basis of the pattern, plus small numbered 

cards (1 to 5), tables, and calculators. Again it is useful to have magnetic copies of objects, cards and numbers. 

The major ideas to be developed are  

 generalisation and justification of generalisation,  

 visual manipulation and numerical tabulation,  

 representation of generalisations with variables (introduction to algebra), and  
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 introduction of line graphs and relation of slope and 𝑥-intercept to growing and fixed parts of growing 

patterns.  

As well, the difference between use and non-use of number tables can be identified; that is, number tables make 

identification of position pattern rule easier but determining the rule from visuals alone enhances students’ 

ability to justify their rule and to find more than one version of the rule (which helps develop equivalence of 

expressions). 

2.1.3 Nonlinear growing patterns 

Growing patterns can be constructed in such a way that they do not grow in a constant manner (i.e. by the same 

amount each time). For example, the pattern on the left below (open square) grows by 4 each time while the 

pattern on the right (filled square) grows by increasing amounts: 

0 1  2 3  

(and so on) 

 0 1  2  3 

(and so on) 

 

 

 

  

  

 

 

 

 

 

 

The left-hand pattern is 0, 4, 8, 12, 16, and so on (the multiples of 4) which is the rule 4𝑛 (a linear equation) and 

the right-hand pattern is 1, 4, 9, 16, 25, and so on (the squares starting at 12) which is the rule (𝑛 + 1)2 (a 

quadratic, thus a nonlinear equation). 

There is a relationship that gives whether the pattern is a quadratic or a cubic and so on. Consider the patterns 

below: 

 Pattern A  1, 3, 5, 7, 9, 11, and so on   

    Subtracting consecutive terms gives 2, 2, 2, 2, and so on (all the same)  

    so the rule has 𝑛 in it (it is linear). 

  Pattern B 2, 3, 5, 8, 12, 17, and so on 

    Subtracting consecutive terms gives 1, 2, 3, 4, 5, and so on 

    subtracting consecutive terms again gives 1, 1, 1, 1, and so on (all the same) 

    so the rule has 𝑛2 in it (it is a quadratic and nonlinear). 

  Pattern C 2, 5, 10, 18, 30, and so on 

   Subtracting consecutive terms gives 3, 5, 8, 12, and so on 

   Subtracting consecutive terms again gives 2, 3, 4, 5, and so on 

    subtracting consecutive terms again gives 1, 1, 1, 1, and so on (all the same) 

    so the rule has 𝑛3 in it (it is a cubic and nonlinear). 

Note: If we had to go through the subtraction four times, we would have 𝑛4 in the rule, and so on.  

2.1.4 Patterns in other mathematics strands 

Patterns in other strands can be used to obtain understanding of ideas and recall of facts in these strands. For 

example, the order of place-value positions, the relationship between adjacent place-value positions, counting 

patterns and the odometer principle, multiplication basic facts, higher decade facts (3+4=7  30+40=70) and 

repeated addition are all examples of understandings and facts that can be obtained by seeing patterns.  

Much of this is covered in the YDM Number and YDM Operations resource books.  
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2.2 Very early patterning activities 

Patterns are an excellent way to teach students the act of generalisation and to introduce variables, algebraic 

expressions, and graphs. There are two types of patterns, repeating and growing; and three types of pattern 

rules to identify – the repeating part for repeating patterns, and the sequential and position rules for growing 

patterns. Materials used are objects with different attributes (e.g. size, shape, colour) and cards with numbers 1, 

2, 3, 4 and 5 on them; and a teacher set of these materials magnetised for placing on magnetic whiteboard. This 

section looks at repeating patterns – how to continue them and relate object to position and reverse. 

2.2.1 Copying, continuing and creating repeating patterns 

The steps here are as follows:  

1. Use movements and sound (e.g. body movements, clapping, music and dance steps) to follow patterns of 

activity. 

2. Extend these movement and sound activities to where students have to copy and continue a pattern that 

repeats. 

3. Encourage students to create their own patterns of movements and sound and lead others in copying their 

patterns. 

2.2.2 Copying, continuing, completing and constructing a recorded repeating pattern 

The sequence of activities here is as follows. 

1. The first activity is for the students to copy a pattern (e.g. O X X X O X X X ...) where O is a red block and X is 

a blue block. Teacher places out the pattern with materials and students build a copy. It seems to be a better 

teaching sequence and easier for students if they copy patterns before continuing them. 

2. The second activity is for students to continue a pattern. Teacher starts the pattern (e.g. O X X X O X X X O) 

and students continue it (in this example, X X X O X X X O X ...).  

3. The third activity is for students to identify the repeating part. Students often identify only part of the 

repeating part (e.g. X X X not O X X X), so language must direct students to find all of the repeating part. 

4. The fourth activity is to complete a pattern – to fill in the empty spaces (e.g. what shapes will fill the gap in 

X X O O O X X O O O X X O ____ X O O O ...) 

5. The fifth activity is to have the students construct their own patterns and identify the repeating part. Here 

students sometimes construct a symmetric design which does not go on linearly forever (e.g. X X X O O X X 

O X X O O X X X). This type of pattern could be a repeating pattern if the sequence was repeated; however 

students must show that they understand there is a repeating part and must show the repeats, so that it is 

a continuing repeating pattern like the following: X X X O O X X X O O .... 

6. Finally, the sixth activity has the student reversing the direction of the previous activities and constructing a 

repeating pattern when given the repeating part such as O O X X X (e.g. O O X X X O O X X X O O X X X ...). This 

activity can be made much more difficult if the repeat given is O X X X O, because the repeating part starts 

and finishes with the same object. So start with repeats that are simpler. 

The following points should also be noted: 

 All examples above have only two objects (X and O). Three or more can be used to make more difficult 

repeating patterns.  

 Younger students find it easier to work with repeating patterns if the objects are very different. This 

often means two attributes different – both colour and shape (e.g. red O, blue X). 
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2.2.3 Determining what object is in a position in a repeating pattern 

In this activity, the teacher provides the start of a repeating pattern (e.g. X O O X O O ...) and numbers each object 

as below.  

X O O X O O __ __ __ __ 

1 2 3 4 5 6    10 

The teacher then asks the students to identify the object (X or O) that is in a particular position, e.g. the 10th 

position as in the example above. The sequence involved in this is as follows:  

(a) initially allow the students to put out extra objects until the position is reached before asking them to 

work it out in their head; 

(b) initially give the students positions to find that are five or less ahead of the last item placed before going 

to positions further out (e.g. finding the 10th position is easier than the 13th position); and  

(c) initially allow students to copy the pattern when they are asked to determine the object in positions 

before asking them to find a position in a pattern that the teacher has put out. 

It seems that determining what object is in a position requires students to coordinate two things in their minds, 

the pattern and the position number; or, more difficult, synchronise these two things as moving, in their mind, 

along the pattern of objects and along the number for the position of the objects. It also requires students to 

identify the whole repeat and recognise its components (e.g. one X and two O’s). This is easier to do if the 

students can put out the objects as they go, the number for the position past the last object placed is within the 

students’ subitisation range (normally less than or equal to 5), or the students have familiarised themselves with 

the pattern by placing it out themselves.  

As students get older and gain skip counting proficiency or improved understanding of multiplication, they can 

use the pattern to find the object and so larger numbers can be set as below, e.g. find the 27th term: 

X O O X O O __ __ … __ O __ __ __ 

1 2 3 4 5 6     27    

The students can determine that, for example, the 27th term is O because they see that X O O ... is a pattern of 

three and 27 as a multiple of three must be the last object in the pattern of three (i.e. the students can jump in 

threes). As a beginning to this, students start to manipulate the objects emphasising features as below – they 

start to think of the pattern in terms of its last object. 

X O O X O O X O O __ __ … __  

  3   6   9     27 

Sometimes, the students use a wrapping technique as below – here the students appear to be using multiples of 

six not three and seeing 27 as three more than 24 and counting halfway along the six objects. 

X O O X O O 

X O O X O O 

__ __ __ __ __ __ 

Because skip counting by five and the five times tables are more familiar to students, five-object patterns are 

easier than three- or four-object patterns; for example, students find that a pattern like O O X X X ... is easier 

than a pattern like O X X X ... . Finally, students seem to find patterns like O O X ... easier with respect to finding 

objects in positions than patterns like X O O ... because the students can tag the third or repeat ending object. 

In summary, determining what object is in what position is difficult and should also be part of patterning when 

growing patterns are being developed. It requires students to: (a) coordinate (synchronise) counting and pattern; 

(b) identify the whole repeat and the number of objects in it and relate this to the position of the object to be 

found; and (c) tag the last term and use this for skip counting towards the required term. 
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2.3 Early to middle linear patterning activities 

This section looks at moving from repeating to growing patterns and then undertaking all activities with these 

growing patterns. It introduces the technique of identifying the fixed and the growing part of a growing pattern 

and using this to find the pattern rule. It compares visual to tabular techniques and concludes by relooking at 

generalisation from repeating patterns and how patterning can be connected to some real-life experiences.  

2.3.1 Moving from repeating to linear growing patterns 

The following sequence of steps should be used.  

1. Set up a repeating pattern; say X O O X O O X O O ... . 

2. Ask the students to identify the repeating part and then to break the pattern into repeats and to separate 

the repeats as below. Note that when separating the repeats it can be useful to discuss and trial other ways 

of representing the repeat, as shown below.  

 

3. Have the students construct a set of number cards and place these under the repeats as below. (Note: 

Repeating patterns have the same term structure as growing patterns but they do not grow. Here having 

the zero makes sense as it is the original and the 1 is the first repeat.) 

 

4. Ask students to pick one of the objects and grow it, as shown below. 

 

The teacher can provide a variety of activities – grow one object, grow both objects, grow both at different rates, 

change the way the objects are presented, and so on. This presents repeating patterns as a precursor to growing 

patterns and links the two together. 

2.3.2 Copying, continuing, completing and constructing linear growing patterns 

Once growing patterns are introduced, students can be asked to: (a) copy, continue, and complete growing patterns 

set up by the teacher; and (b) create their own growing pattern and explain how it is growing. It is important to use 

a variety of objects and to build the patterns using a variety of attributes (e.g. colour, size, shape).  

This activity is the major one in the middle years. The steps are similar to those for the repeating pattern activities 

(section 2.2.2) and are as follows. 

1. Set up a growing pattern up to the 3rd term, as on the right. [This example 

has X increasing by two and O increasing by one in each new term.]  

2. Have the students copy this – make their own copy.  

  

XOO XOOXOO or
O

XO
O

XO
O

XO

XOO XOO ……… and so on

1 20

XOO

1 20

XOO
X
XOO

X
X
XOO or

1 20

O
XO

O
O

XO

O
O

XO

O
XO

XO
XO
XO

X
XO
XO
XO
XO

0 1 2
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3. Ask the students to continue this pattern for the next few 

terms; for example, this could involve making the 4th and 

5th terms as in the diagram on right. It is useful for 

students to have number cards and place these under the 

terms.  

4. Ask the students to make some further terms (or tell what 

is involved in these terms) such as the 7th, 10th or 20th 

term. This requires some understanding of the pattern 

rule but can be completed by considering what happens 

term by term. 

5. Ask the students to make the first five terms of their own growing patterns and to explain what is involved 

in the patterns and how the terms are growing.  

6. Finally, have students complete a pattern – this is where 

there are gaps in the example given, as on the right. It 

should be noted that it is more difficult to complete than 

continue a pattern. It is also harder if the terms given are 

not regular, e.g. when you are given the 1st, 2nd and 5th 

terms. [The example on the right has X increasing by one 

and O increasing by two in each new term.]  

2.3.3 Determining growing and constant/fixed parts and finding and using pattern rules 

The important part of growing patterns is to identify the general rule for the pattern that enables any term to be 

determined – this is called the pattern rule. Determining pattern rules is assisted by identifying in the pattern 

what grows and what stays fixed – the growing part and the fixed part rule. Again, there are six steps that should 

be followed. 

1. Look at patterns and discuss what grows and what is fixed. It is important to start this process with simple 

growing patterns such as that below. 

 

2. Use the above information to work out what each term will look like. This is usually done for some numbers 

and then considered for any term. For the example above, the 10th term is one star and 10 circles, the 20th 

term is one star and 20 circles, and so on.  

3. Next, identify the pattern rule. There are two types of pattern rule – the sequential pattern rule which gives 

the difference between sequential terms, and the position rule which relates number of objects to the term 

position. The sequential rule for the pattern above is “add one circle”, and the position rule (number of 

objects) is 1 + position number. We should accept messy language at this stage; later we can give the rule in 

terms of 𝑛. 

4. The fourth step is application to real-world problems. For 

example, a table in a restaurant sits 4, two tables pushed 

together sits 6, and so on. How many will 15 tables pushed 

together into a row sit? [32]  

5. Next, reverse the process and find the position of the term 

with a given number of objects. For example, in the first pattern above, what position has 62 objects? [the 

61st position]. In the table pattern above, how many tables have to be pushed together in a row to sit 18 

people? [8 tables].  

O
XO

XO
XO
XO

X
XO
XO
XO
XO

0

X
X
XO
XO
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XO
XO
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XO
XO
XO
XO
XO
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O
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6. Finally, teach students to solve patterns both 

visually and by use of tables. To assist with 

generation of rules from visual cues, it is important 

to teach students to visualise objects in different 

ways. Consider the pattern on the right.  

The pattern consists of two towers and these can be viewed in at least three ways, as shown below. Person 

A sees one double tower and an extra, Person B sees two single towers with one tower having one more 

than the other tower, and Person C sees a double tower with one missing.  

 

 

The three cases have the same sequential rule which is “add 2”. However, each case has a different but 

equivalent position pattern rule. For the third term, A is a 2 × 3 tower plus an extra 1, B is a 3 tower plus a 4 

tower, and C is a 2 × 4 tower minus 1. Thus, for any term or position, A gives the position pattern rule of “2 

times the position plus 1”, B gives “position plus position plus 1”, and C gives “2 times (position plus 1) minus 

1”. In algebra these are 2𝑛 + 1, 𝑛 + 𝑛 + 1, and 2(𝑛 + 1) − 1 for any 𝑛, which are the same thing. 

2.3.4 Tables versus visuals for growing patterns 

There has been debate over when tables of numbers should be used as a way of finding position pattern rules, 

as against determining the pattern from the visuals. It is important that students be taught all strategies; 

however, for growing patterns in numbers, tables are the main strategy (as below).  

Number 1 3 5 7 9 and so on 

Position 0 1 2 3 4  

This book recommends that both the visual and table strategies be taught. Therefore, in the second half of the 

middle years, introduce tables to scaffold thinking as below. 

1. Teacher provides a growing pattern as on right. 

2. Students construct and complete a table as below right.  

3. Students find the sequential and position pattern rules. For the sequential 

rule, look down the table; for the position rule, look across the table. 

Looking down the right-hand column, the sequential rule can be seen 

as “add 2”. Looking across the table, the position rule is found by 

checking if there is some multiplication and/or addition/subtraction 

that works for all numbers. For example, 1 × 2 = 2 which is 1 less than 

3, 2 × 2 = 4 which is 1 less than 5, so try this on next (yes, 3 × 2 + 1 = 8, 

4 × 2 + 1 = 9 and so on). Thus, the position rule is that, for a number 

like 256, the number of objects is 2 × 256 + 1, and in everyday 

language, as a generalisation, it is “2 × term number + 1”.  

It is a good idea to ask the students what would it be for any position number 𝑛 but not expect all to get the 

answer as an algebraic expression. 

4. Reverse the direction by giving students a rule such as “3 times the position plus 2” and ask them to 

construct a pattern for this rule. Do the same for a sequential pattern rule.  

Note: The table is simpler to use to find the position rule. However, the visual method gives the reason for the 

rule and gives more than one rule. 

No. of term No. of objects 

0 1 

1 3 

2 5 

3 7 

4 9 

Person A Person B Person C 

 

2 3 4 5

  

1

  

0
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2.3.5 Tables in repeating patterns 

It is also possible to use repeating patterns to develop generalisation. To do this, a repeating pattern is displayed, 

the students are asked to break it into repeats, and then complete a table for these repeats from which 

generalisations can be found. An example of this is below.  

Pattern:  XXOXXOXXO …  

Original + repeats: XXO  XXO  XXO   

Table: as on right 

Generalisations: Look for “patterns” or “rules” down 

and across the table; the down generalisations include: 

originals + repeats go up by 1, X’s go up by 2, O’s go up 

by 1, and total goes up by 3; and the across 

generalisations include number of X’s is twice the number of original + repeats, number of O’s is equal to the 

number of original + repeats, and total is three times the number of original + repeats. 

2.3.6 Patterning applications 

YDM is based on relating mathematics to reality – in particular, the RAMR cycle argues that mathematics should 

come from reality (through abstraction) and return to reality (through reflection). In this book, we have focused 

on the sequence in building algebraic ideas. This is particularly so with patterns where we have given emphasis 

to how we build from repeating to growing patterns to finding the pattern rule with little focus on real-life 

examples. This small subsection is to provide balance and to discuss how we can ensure that we start and end 

with reality.  

Repeating pattern examples 

The major sources of reality for repeating patterns are as follows. 

1. The built environment. Many components of the built environment will repeat; this could be as simple as 

window, window, balcony repeated, or window, window, door, window, garage, repeated. Paving is often a 

repeating pattern as is tiling – colours and shapes. Garden beds, trees and lawn can follow repeating patterns 

– particularly with respect to edges. 

2. Art and design. Many forms of art repeat – for example, weaving can produce a colour pattern for a scarf, 

knitting and crocheting can follow complex repeating patterns of different stitches. All fabric designs are 

repeats as are many of the artistic designs on buildings (e.g. frieze patterns). This area is a real opportunity 

to involve different cultures and their art and design. 

3. Dance and music. Drumming and clapping rhythms are repeated patterns as are rhythms using double 

basses and guitars. Playing music is a great way to introduce repeating patterns. YDC has developed with a 

music group called JAM (Join Australian Music) a set of mathematics lessons that use repeating patterns to 

enable students to develop mathematics knowledge based on drumming and clapping rhythms, pitch, 

loudness, and notes/beat (for further information, contact ydc@qut.edu.au).  

4. Poetry. Some poetry and song lyrics follow repeating patterns (e.g. limericks). The mathematics of the 

repeating patterns can be introduced as a way to analyse the writing. 

Growing pattern examples 

It is harder to find good reality examples for growing patterns. However, some examples are as follows. 

1. Growing shapes. There are some fun ones in this area, like using counters to grow shapes (e.g. squares, 

triangles, pentagons, L’s, X’s, Y’s, N’s, W’s, and so on). Be careful to ensure these are linear if focusing on 

linear relationships. 

No. of 
original + 
repeats 

No. of X’s No. of O’s Total 

1 2 1 3 

2 4 2 6 

3 6 3 9 

    

    

mailto:ydc@qut.edu.au
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2. Real-world situations. The real world can also provide examples like the relationship between chairs and 

tables in a restaurant. However, be careful, because many of these such as the number of ways one could 

go up a number of stairs are nonlinear examples that lead to square or triangular numbers (1, 3, 6, 10, 15, 

...) and Fibonacci sequences (1, 1, 2, 3, 5, 8, 13, ...). Nonlinear patterns are covered in section 2.5. 

3. Mathematics itself. Many of the relationships in mathematics start off as patterns. For example, interior 

angle sums for 𝑛-sided polygons, the number of diagonals in an 𝑛-sided polygon, the rule for place-value 

positions when multiplying/dividing decimal numbers, and so on. This is a good opportunity to integrate 

aspects of mathematics – use discovering of a formula as a chance to solve growing patterns.  

4. Scientific experiments. One way to have something with reality for any growing pattern is to argue that you 

are testing a chemical on tree growth. The tree starts with the fixed part, say two leaves, then after each day 

it has grown three extra leaves, and so on (this is pattern 3𝑛 + 2; pattern 4𝑛 + 3 would start with three 

leaves and grow four each day). Talking about days and leaves helps students work out the pattern. For this 

experimental approach, it is appropriate to start from 0 because the extra leaves grow after 1 day, 2 days 

and so on. The tree with its two starting leaves is day 0. 

2.4 Later linear patterning activities and applications to graphing 

This section continues the patterning activities as a way of introducing variable and graphing for both growing 

and repeating patterns, ensuring that all developments are reversed. It shows how repeating patterns introduce 

equivalent fractions and ratio (proportion). It concludes by looking at graphing skills such as slopes and midpoints 

of lines, and by looking across patterns and their graphs to investigate relationships between characteristics of 

patterns and characteristics of graphs. 

2.4.1 Building algebraic generalisations from growing patterns 

In the later years, it is important to ensure that students can find and express generalisations from patterns in 

quasi-generalisation form (for large numbers, e.g. 3 × 674 + 2), in language (informally, e.g. “3 times the position 

plus one”), and in algebraic form (e.g. 3𝑛 + 2). This is developed in the following sequence. 

1. Present a pattern as on right, e.g. starting with one stick, how many sticks 

to make, 1, 2, 3, ..., squares in a row.  

2. Identify the fixed and growing parts of the pattern (the first stick is fixed 

and then it grows by three sticks, as on right).  

3. Determine the sequential rule (“add 3”) and the position rule 

(“number of sticks is 3 times position plus 1”). To assist finding the positional rule, do the following: 

(a) record the number of sticks for each term – term 1 is 1 + 3 = 4 sticks, term 2 is 1 + 3 + 3 = 7 sticks, term 

3 is 1 + 3 + 3 + 3 = 10 sticks, and so on; 

(b) develop quasi-generalisation – e.g. for term 7, number of sticks is 1 + 3 × 7 = 22, for term 100, number 

of sticks is 1 + 3 × 100 = 301, for term 345, the number of sticks is 1 + 3 × 345 = 1036;  

(c) state the generalisation in language – “1 stick at start plus 3 for every term”.  

4. Put the generalisation in algebraic terms (any number represented by the letter 𝑛) as 1 + 3𝑛 (or 3𝑛 + 1). 

5. Use the generalisation to reverse the position-to-number activity to number-to-position, e.g. how many 

squares use 28 sticks? [Position 9 has 1 + 3 × 9 sticks, so answer is 9 squares.]  

6. Reverse everything and construct a pattern from a pattern rule, e.g. 2𝑛 + 3  

(as on right).  

This activity can be extended to graphing. Once the position pattern rule has been 

determined as an algebraic expression, a graph can be constructed (see section 2.4.2). 

1 2 30

1 2 30
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Note: If term 1 of the pattern was one stick (instead of one square) and then 

went to the squares as on right, the pattern is the same in terms of fixed and 

growing part but the pattern rule is different because the pattern is 1, 4, 7, 

10, ... instead of 4, 7, 10, .... . In this case, the pattern is 1 for term 1, 1 + 3 × 1 

for term 2, 1 + 3 × 2 for term 3, 1 + 3 × 3 for term 4 and so on. This means that for position 10 it is 1 + 3 × 9 and 

for position 𝑛 it is 1 + 3 × (𝑛 − 1) = 1 + 3𝑛 − 3 = 3𝑛 − 2. That is 3 less than the original pattern, 3𝑛 + 1. This 

is (3𝑛 + 1) − 3 =  3𝑛 − 2.  

2.4.2 Extension to graphs for linear growing patterns 

Begin with same pattern as in subsection 2.4.1 above and complete steps 1 to 6. The 

remaining steps are as follows. 

1. Construct a table and place early values in it: 

Number 1 4 7 10 13 16 and so on 

Position 0 1 2 3 4 5  

2. Use the table to draw the graph (as on right). 

3. Reverse everything – provide a graph as below and make up a pattern to match this graph (use the fact that 

term 0 = 2, term 1 = 4, term 2 = 6, etc. to construct a pattern – see below right).  

 
There is a relationship between graphs and patterns that holds generally for growing parts and, in a way, for 

fixed parts. The slope of the graph is the growing part, and the 𝑦 intercept is the fixed part of a growing pattern. 

It works on the two examples above. The pattern at the start of subsection 2.4.1 grows by 3 and has a fixed part 

of 1, and gives a graph with slope of 3 and a 𝑦 intercept of 1. The graph above has a slope of 2 and a 𝑦 intercept 

of 2 and the pattern it comes from grows by 2 and has a fixed part of 2.  

Thus, we can build the generalisation of graphs of straight lines, 𝑦 = 𝑚𝑥 + 𝑐, where 𝑚 is slope and 𝑐 is 𝑦 

intercept, by graphing patterns that grow by 𝑚 and have a fixed part of 𝑐.  

2.4.3 Moving from physical to mathematical patterns 

Up to now, we have focused on patterns that emerge from using counters or sticks, for example: 

 and so on 

 0 1 2 3  

However, physical objects cannot show negatives and these are perfectly acceptable in patterns. Thus, we now 

move from physical to mathematical patterns, for example: 

Number 7 5 3 1 −1 −3 ?  

Position 0 1 2 3 4 5 6 and so on 
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We can even give the pattern in the middle, for example: 

Number ? ? ? 1 4 7 ? ? 

Position 0 1 2 3 4 5 6 7 

The steps are the same, as follows. 

1. Construct a table:  

Number −8 −5 −2 1 4 7 10 13    

Position 0 1 2 3 4 5 6 7 and so on 

2. Look for a pattern: growing part is +3, starting is −8; pattern is ×3 −8 

3. Give the pattern rule: 𝑛th term is 3𝑛 − 8. 

4. Reverse the pattern rule: position for amount 𝑘 is (𝑘 + 8) ÷ 3. 

5. Draw graph: slope = 3, 𝑦-intercept = −8. 

6. Reverse everything: go from graph to pattern. 

 

It is also possible for the graph and growing part to be negative, as in the following 

example. 

1. Table: 

Number 11 7 3 −1 −5    

Position 0 1 2 3 4 and so on 

2. Pattern: growing part is −4, start is 11; pattern is ×−4 +11. 

3. Pattern rule: 𝑛th term is 11 − 4𝑛. 

4. Reverse: position for amount 𝑘 is (11 − 𝑘) ÷ 4. 

5. Draw graph: slope = −4, 𝑦-intercept = 11.  

2.4.4 Building algebraic generalisations from repeating patterns 

The process in subsection 2.4.1 can be applied to repeating patterns to also teach generalisation to algebraic 

expressions as follows. (It is based on considering numbers of objects after 1, 2, 3, and so on repeats.) 

1. Teacher presents a repeating pattern – we’ll use the following pattern: X X O X X O X X O ... XXO  XXO  XXO 

... in repeats.  

2. Complete the table below and find the down and across patterns. 

No. of original 

+ repeats 
No. of X’s No. of O’s Total 

1 2 1 3 

2 4 2 6 

3 6 3 9 

    

    

3. Generalise how to find the numbers for 𝑛 repeats. Do this in language first – O’s are the same as number of 

original + repeats, X’s are double number of original + repeats, and so on. 

-10

-5

0

5

10

15

0 1 2 3 4 5 6 7

-6

-4

-2

0

2

4

6

8

10

12

0 1 2 3 4
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4. State generalisations as algebraic expressions – if 𝑛 original + repeats, number of X’s is 2𝑛, number of O’s is 

𝑛, and total number is 3𝑛.  

5. Reverse the original+repeats-to-number activity (to number-to-original+repeats) – how many original + 

repeats are needed for 26 X’s? [26 = 2𝑛 so it is 13 original + repeats.]  

6. Reverse the activity algebraically (e.g. if 𝑛 X’s, then 𝑛 2⁄  original + 

repeats).  

7. Graph the relationship between number of X’s and number of original + 

repeats.  

8. Reverse overall – construct a repeating pattern of X’s and O’s for a given 

graph, e.g. the graph on right. This graph has 3 X’s for original, 6 X’s for 

original + 1 repeat, so it is OXXX, OXXX ... or OOXXXOOXXX, etc. Note: 

The 𝑦-intercept is 0. This is because for no original or repeats this is 

always zero.  

2.4.5 Extending repeating patterns to fractions and ratio/proportion 

The use of repeating patterns is only the start – repeating patterns are excellent for introducing fractions and 

ratios and equivalent fractions and ratios, as follows.  

1. Pattern. Start with a repeating pattern, e.g. X X O O O X X O O O X X O O O 

2. Repeats. Change it to original + repeats, e.g. XXOOO   XXOOO   XXOOO 

3. Table. Complete a table that contains fractions and ratios. 

No. of original 

+ repeats 
No. of X’s No. of O’s Total 

Fraction 

X’s 

Ratio 

X:O 

1 2 3 5 2
5⁄  2:3 

2 4 6 10 4
10⁄  4:6 

3 6 9 15 6
15⁄  6:9 

      

      

4. Generalisation. Look at what 𝑛 original + repeats will give (repeats to O’s and X’s). 

5. Reversing. Go from numbers of O’s and X’s to number of original + repeats (e.g. 72 O’s means 72 3⁄  original 

+ repeats = 24 original + repeats). 

6. Equivalence. Discuss whether fractions and ratios are equivalent (or in ratio terms, in proportion). For 

example, is 2:3 = 4:6? 

Note: A student explained it to class as shown on right. She stated that 2:3 is 

XXOOO and 4:6 is XXXXOOOOOO. However, she rearranged the objects as on 

right and argued that this showed that XXXXOOOOOO is the same as XXOOO. 

7. Reversing overall. Make up a repeating pattern where the ratio is 2:5 (e.g. O O X X X X X O O X X X X X O O X 

X X X X and so on). 

Notes: (a) The teaching approach is to have class discussion. Let students propose generalisations. Don’t say if 

generalisations are right or wrong. Focus on down and across generalisations. Encourage students to justify their 

point of view. (b) Repeating patterns can be done with number, e.g. 1 2 2 1 2 2 1 2 2, ..., but numbers here act 

like objects. 

Same as XX 000
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2.4.6 Relationships between linear growing patterns and graphs for linear equations 

Relationships between patterns and graphs of linear equations can be found by relating solutions to different 

patterns looking for similarities and differences. 

1. Provide examples of patterns that have fixed growing parts (pattern rule is a linear equation) and are related 

in a way that enables relationships with regard to graphs and functions to be seen. For example: 

(a) 

 

(b) 

 

(c) 

 
    0  1  2  3   0  1  2  3   0   1   2   3 

      

(d) 

 

(e) 

 

(f) 

 
    0  1  2  3  0  1 2  3   0 1  2   3 

 

Note: The composition of, and position rules for, the patterns and their graphs are as follows. Examples have 

to be chosen so that the linear relationships that are wanted are available from the patterns. 

PATTERN COMPOSITION POSITION RULE GRAPH CHARACTERISTICS 

(a) Grows by 2, no fixed part, starts with 0  2𝑛 Slope 2, 𝑦-intercept 0 

(b) Grows by 2, fixed part of 1, starts with 1  2𝑛 + 1 Slope 2, 𝑦-intercept 1 

(c) Grows by 2, fixed part of 2, starts with 2  2𝑛 + 2 Slope 2, 𝑦-intercept 2 

(d) Grows by 1, fixed part of 2, starts with 2  𝑛 + 2 Slope 1, 𝑦-intercept 2 

(e) Grows by 3, fixed part of 1, starts with 1  3𝑛 + 1 Slope 3, 𝑦-intercept 1 

(f) Grows by 4, fixed part of 2, starts with 2  4𝑛 + 2 Slope 4, 𝑦-intercept 2 

2. For each pattern, analyse the values visually and identify the fixed and growing parts. 

3. For each pattern, find the value of some positions (e.g. 10, 100, 39, 64), find the position of certain values 

(e.g. 17, 71, 149 for pattern b), write the pattern rule in English, find the value for position 𝑛, and find the 

position for value 𝑘. 

4. Draw the graph of each pattern and identify the slope and 𝑦-intercept. 

5. Look for patterns between characteristics of pattern, position rules, and characteristics of graph (can be 

useful to complete a table like that above). First compare (a), (b) and (c) noting similarities and differences 

– what changes (fixed part) and what does not change (growing part). Then compare (d) with (c) – now 

growing part changes and fixed part stays the same. After this compare (e) and (f) – both growing part and 

fixed part are different (but how does this difference relate to graphs, its slope and 𝑦-intercept?).  

What follows is the general rule for slope: if the growing part is 𝑝, the pattern rule starts with 𝑝𝑛 and the graph 

has slope 𝑝. This relationship is even more obvious when we restrict ourselves to numbers. For example: 

Number 7 5 3 1 −1 −3    

Position 0 1 2 3 4 5 and so on 

The growing part is −2, the fixed part is 7, so the pattern is 7−2𝑛. This makes the slope −2 and the 𝑦-intercept 7. 

This means that the function for a linear equation is 𝑓(𝑥)  =  𝑚𝑥 +  𝑐 where 𝑚 is the slope (and the growing 

part if from a linear growing pattern) and 𝑐 is the 𝑦-intercept and the constant part for the zero term (𝑛 = 0).  

Note: It is useful to compare the patterns above to triangular numbers; a pattern which does not have fixed growth. 
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2.5 Nonlinear patterning activities 

Linear patterns are the important patterns for up to Year 9 for two reasons. First, they are the simplest form of 

algebra and so allow learning of forms such as 2𝑛, 𝑛 + 3 and 2𝑛 + 3. Second, they lead to understanding of graphs 

of lines and linear equations which are the major focus up to Year 9. However, there are also opportunities for 

nonlinear pattern work to pre-empt quadratics and other nonlinear forms in Year 10 onwards.  

2.5.1 Nonlinear patterns and graphs 

Here are some steps for investigating linearity and nonlinearity. 

1. Comparing linear and nonlinear 

A.  Consider the two patterns below: 

 0  1  2  3  4  5 

Linear A1 

  

 

 

 

 

 

 ?  ? 
            

Nonlinear A2  

 

 

 

 

 

 

 ? 
 ? 

(a) Complete terms 4 and 5 by drawing or with counters. 

(b) Look at term 5 visually and use this pattern to determine the 10th term, 100th term and 156th term for 

A1 and A2. 

(c) Describe the positional rule for A1 and A2 (in language and as an algebraic expression). 

B.  Consider the two patterns below: 

 0  1  2  3  4  5 

Linear B1 

  

 

 

 

 

 

 ?  ? 
 

  
         

Nonlinear B2  

 

 

 

 

 

 

 ? 
 ? 

 

Repeat questions (a) to (c) above.  

Hint: To find the rule for B2, put two triangles together, see that they form a 

parallelogram as on right – and so the triangle is half of this. 
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2. Comparing graphs of linear and nonlinear 

Plot points on a table and then transfer them to graphs. 

 0 1 2 3 4 5 6 7 

A1 0 4 8 12 16 20 24 28 

A2 1 4 9 16 25 36 49 64 

 

  

 

 0 1 2 3 4 5 6 7 

B1 0 3 6 9 12 15 18 21 

B2 1 3 6 10 15 21 28 36 

 

  

 

3. No comparison 

Find the position rule for the following nonlinear patterns.  

  

0
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 0 1 2 3 4 5 

C     ? ? 
       

D 
   

? ? ? 
       

E  
 

 
 

? ? 
       

F  
   ? ? 

 Note: Drawing F is showing a pattern which doubles every time. 

G      
 

 Note: Drawing G is showing a pattern which adds the previous number to the one before that. 

H  

  

 

 

Note: Drawing H is showing the pattern for going up stairs if we can go up 1, 2, 3 or any number of steps 

at a time; how many different ways can we go up 1 step, 2 steps, 3 steps, ... any number of steps: 

STEPS WAYS STEPS WAYS 

1 1 2 2 

3 4 or 2×2 4 8 or 2×2×2 

5 16 or 2×2×2×2 6 32 or 2×2×2×2×2 

The result of this investigation is that 𝑛 steps means 2×2 ... ×2 𝑛 − 1 times; we can use this to introduce 

the notation 2𝑛, 2𝑛−1, and so on. 

4. Reversing 

Start with a nonlinear pattern, for example 𝑛2 + 3𝑛, and construct a pattern. 

(a) Numbers: 

 0 1 2 3 4 5 

I 0 4 10 18 28 40 
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(b) Construct a pattern to fit this. 

Repeat this for:  

(c) J with the pattern rule 2𝑛2 + 𝑛. 

(d) K with the pattern rule 3𝑛2 − 𝑛 + 2. 

(e) L with the pattern rule 𝑛3 − 𝑛.  

2.5.2 Growing and fixed parts (challenge) 

In linear patterns, we found that the growing and fixed parts of a pattern related directly to the graph. For 

example: 

O O O O O O O O O O 

 X X X X X X X X X X 

 X X X X X X X X X X 

 X X X X X X X X X X 

0 1  2    3 4 

The above pattern has a fixed part of 2 and a growing part of 3. The growing part of 3 can be seen in the table by 

looking at differences – these are all 3 and are the same, thus the growing part is 3. Therefore the equation for 

the position rule for this pattern has a 3𝑛 in it and the graph has a slope of 3. The 𝑦-intercept is related to the 

fixed part which is 2, but it depends on what happens when 𝑛 is zero. Here it is 2.  

We can now say that the pattern rule is 3𝑛 + 2, that the coefficient or power of 𝑛 is 1, and that the relationship 

and graph is linear, with slope of 3 and 𝑦-intercept of 2. 

Position 0 1 2 3 4 5 6 7 

Number of objects 2 5 8 11 14 17 20 23 

Difference  3 3 3 3 3 3 3 

 

The question is whether something similar to this holds for nonlinear. To explore this we look at an example of 

a quadratic (e.g. example A2 which is 𝑛2 + 2𝑛 + 1). 

1. Take quadratic A2 and put the information into a table. 

Position 0 1 2 3 4 5 6 7 8 

Number 1 4 9 16 25 36 49 64 81 

2. Now subtract differences and continue until differences are the same or constant. 

Position 0 1 2 3 4 5 6 7 8 

Number 1 4 9 16 25 36 49 64 81 

  3 5 7 9 11 13 15 17 

   2 2 2 2 2 2 2 

3. It took two differences to get the constant. Is there a pattern here – one difference to constant for linear 

like 3𝑛 + 2; two differences to constant for quadratic like 𝑛2 + 2𝑛 + 1. Is it possible that all quadratics take 

two differences to get a constant?  

4. The constant is 2, this is the coefficient of 𝑛 in 𝑛2 + 2𝑛 + 1. Is this always the case for quadratics? 

5. Repeat the above for the quadratic patterns in examples B2, C, J and K. Does it hold?  

6. Try this difference technique for cubics F and L. Is there a similar rule for cubics? 

7. Is there a rule that relates difference to coefficient of 𝑛? 
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3 Change and Functions 

This chapter on change and functions explores how to represent everyday life in terms of change or 

transformation. Thus, it studies the symbols, notation and rules for change and functions (including input–output 

tables and arrowmath symbols and their relation to equations and graphs). In the long run, it returns to 

representing functions using equation notation. It is important that arrowmath and equations be related at the 

end so that both relationship and change ideas can be applied to algebraic situations using the same notational 

forms (the expression and the equation).  

To get to this point requires studying (a) change in unnumbered situations; (b) linear change in arithmetic 

situations (numbers and operations but with no squares, cubes, and so on); (c) linear change in algebraic 

situations (variables and operations); and (d) nonlinear change. Similarly to patterns, most of the change and 

function work for Years P to 9 is in linear form. However, the groundwork for nonlinear changes should be laid 

to pre-empt the needs of Year 10. The teaching sequence is shown in the figure below.  

 

The sections in this chapter are constructed around the activities suitable for different year levels. The chapter 

begins by looking at major ideas and models (section 3.1), then linear activities across Years P to 9 under the 

headings Very early change and function activities (section 3.2), Early to middle linear change and function 

activities (section 3.3) and Later linear change and function activities (section 3.4). The chapter concludes with a 

section on function applications and nonlinear change (section 3.5).  

3.1 Major ideas and models 

This section looks at the major mathematical ideas that underlie change and functions. It describes the two 

approaches to mathematics, discusses how change leads to identity and inverse/backtracking and the notation 

called arrowmath, and lists the major ideas to be developed. It describes the two main models used (number 

line and function machine). It shows how the function machine model leads to variable and graphing. 

3.1.1 Major ideas 

Real-world situations can be translated into relationships or into changes. For example, 

“2 joining 3 to make 5” is a relationship if considered as 2+3 = 5 and is a change if 

considered as 3 changing to 5 by +2 (as on right).  

The meaning of change in arithmetic

Function machines/Linear change/
Arrowmath notation

Generalising change rules (variables)/
Translating arrowmath ←→ equations

Unknowns and linear change

Non-linear change/Inverse/Graphs

Solving linear equations/
Relation to graphs

Materials
Function machines/
Input-output tables

Number lines/Arrows

Arrowmath/Equations
Inverse of linear change/Backtracking

3 5 
+ 2 



Page 36     Change and Functions VERSION 3, 20/09/16 © QUT YuMi Deadly Centre 2014 

These real-world situations do not 

have to involve operations. For 

example, two triangles being similar 

can be considered as a relationship 

of angles being equal and sides in 

ratio, or can be considered as a 

change due to a projection that 

enlarges the first shape to the second 

shape, as on right.  

Identity and inverse 

The major ideas to be covered in change and functions deal with mathematical forms that describe change (such 

as functions) and with the major ideas that emerge from changes, namely,  

(a) changes that do not change anything (e.g. +0, ×1, a 360° turn) – the identity principle; and  

(b) changes that reverse other changes (e.g. −6 reversing +6, ÷8 reversing ×8) – the inverse principle and 

backtracking. 

Relationships are most often represented as equations and this form of notation is good for seeing equals as 

balance and for applying the balance principle (that there is a left-hand side and a right-hand side and they have 

to stay in balance). 

Arrowmath 

Changes can also be represented as equations but it is easier to understand them if they are represented by 

arrowmath notation. For example, the situation I bought some $3 pies and a $5 chocolate, how much did I spend? 

cannot be calculated because there is not enough information given. However, if we knew the number of pies, 

we could calculate the answer by multiplying this number by 3 and adding 5. Thus, the notation can be thought 

of as the equation 𝑛 × 3 + 5 (or 3𝑛 + 5), or in arrows: 

𝑛 
×3
→   

+5
→  

The arrowmath notation makes studying the change easy. First, changing forward, it is easy to work out what money 

will be paid for differing numbers of pies, for example, if the number of pies is 7, then the answer is $26. 

7 
×3
→   

+5
→  26 

Second, by reversing the change, it is possible to find the number of pies if I paid $38 for the pies and chocolate 

(see below). We use the inverses of the operations and backtrack (as shown in the bottom arrows) to the answer 

of 11 pies. 

𝑛 
×3
→   

+5
→   38 

11 
÷3
←  33 

−5
←   38 

Ideas developed by change 

Thus, the major ideas that can be developed in this section relate to inverse but include the following: 

(a) developing the notion of change and inverse (backtracking) in unnumbered situations; 

(b) extending the notions of change and inverse to numbers and operations (first with addition and 

subtraction, second with multiplication and division, and third with more than one operation); 

(c) introducing drawings (number lines and function machines), tables and arrowmath notation to describe 

changes and inverses;  



© QUT YuMi Deadly Centre 2014 VERSION 3, 20/09/16 Algebra     Page 37 

(d) relating change and inverse (backtracking) to real-world situations and vice versa; 

(e) generalising change and inverse and using this to introduce variables and algebraic expressions and 

equations (including conversions between arrowmath and equation notations); 

(f) interpreting real-world problems in terms of change and using backtracking to solve for unknowns; 

(g) representing generalised change with graphs and relating real-world situations, arrowmath and 

equation notation, and graphs and change to graphs in all directions. 

3.1.2 Main models 

There are two major models that can help with change, namely number lines and function machines. 

Number lines 

Operations can be represented on number lines by arrows, for example, the 

problem with the pies and chocolate (3𝑛 + 5 = 𝑛 + 𝑛 + 𝑛 + 5 = 38) can be 

represented on a double number line as in the diagram on the right. 

The number of pies (𝑛) can be worked out by first crossing out the 5 which gives 

3𝑛 = 𝑛 + 𝑛 + 𝑛 = 33 and then sharing the 33 evenly between the three 𝑛’s as on 

the right. This gives the answer of 11 pies.  

However, this reflects the balance approach from equivalence and equations (see 

Chapter 4) and does not use backtracking (inverse).  

There is another way to represent the problem on a number line as change. This way shows operations as 

changes on the line as shown below. 

 

Backtracking is going back along the line and undoing what has been changed as seen below. 

 

Function machines 

This is the major model. A “machine” is constructed. It can be a whiteboard, or blackboard or a box with holes in 

it and takeout cards, for example:  

 

Function machines operate as follows. 
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1. Situations are described: I sold small prints for $20 each, I paid $200 to rent the site, how much money did I 

make? 

2. Situations are translated to activities on an unknown or variable, e.g. P is the number of prints so: 

𝑃 
×20
→    

−200
→    

3. These are translated to two function machines and the changes 

are acted out by students with numbers on cards. 

4. Examples are put on an input–output table (shown on right) 

starting with input numbers, and students act out the change. 

5. Numbers are then put into the middle or 

output and students act out how to find the 

other sections of the table. 

6. A variable amount, say 𝑛, is considered and discussed at the function 

machines and responses included. 

7. Then different examples (including variables) are given at output and 

students backtrack to find input using the function machines and 

recording on input–output table.  

 

8. The changes are reversed, and the inverse operations and inverse sequence is 

found and written in arrowmath notation, as shown on right. 

9. Then the change and inverse change are written as 

equations, as shown on right (it takes time to get used to how 

these two are connected). 

10. The change is then graphed as on right below. 

11. Everything is reversed: a graph is drawn and students have to find 

equations (forward and inverse), change equations, use arrowmath 

notation, put examples on the input–output table, and construct the 

function machines. 

Notes: (a) the 11 steps above are the final endpoint of teaching across P–9; only 

a few of these steps would be undertaken for young students; (b) if this 

approach is learnt, it makes such things as the inverse of a function easy. For 

example, a function 𝑓(𝑥) = 2𝑥 + 1 can be considered in arrowmath notation as shown below left. Thus, the 

inverse function, 𝑔(𝑥), is this arrowmath notation in reverse (backtracked) as shown below right. Changing this 

backtracking to an equation, this means that the inverse function is 𝑔(𝑥) = (𝑥 − 1) ÷ 2. 

 𝑥 
×2
→    

+1
→   𝑓(𝑥) 𝑔(𝑥)

÷2
←    

−1
←  𝑥 

300
x 20 - 200

Back track

Input Middle Output 

8 160 −40 

10 200 0 

20 400 200 
Input Middle Output 

? 240 ? 

? ? 100 

Input Middle Output 

𝑛 20 × 𝑛 20 × 𝑛 − 200 

𝑛 20𝑛 20𝑛– 200 

Input Middle Output 

22 440 240 

25 500 300 

𝑚 + 200

20
 

𝑚 + 200 𝑚 

0

50

100

150

200

250

300

350

10 15 20 25

No. Of prints

Money 
made

8
x 20 - 200

𝑃
×20
→   

−200
→    𝑚   same as   20𝑃 − 200 = 𝑚 

𝑃 
÷20
←   

+200
←    𝑚   same as   

𝑚+200

20
= 𝑃 

𝑃
×20
→   

−200
→    𝑚 

𝑃 
÷20
←   

+200
←    𝑚 
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3.1.3 Applications and nonlinear changes 

The changes considered in this section are predominantly linear, consisting of one or two operations, such as 

3 × 𝑝 + 2 or  
𝑝

5
− 6. This is because, up to Year 9, linear functions are the major form of function used and the 

development of backtracking is used for solving linear equations with unknowns in algebra.  

There are two applications of the change approach and associated backtracking: percent, rate and ratio problems 

and nonlinear changes. 

Percent, rate and ratio 

Backtracking can be used for percent, rate and ratio problems in upper primary and junior secondary school, as 

we have seen in the YDM Number book. 

Percent 

 

Rate 

 

Ratio 

 

Nonlinear changes 

Changes can be nonlinear involving quadratics and cubics. For example, The carpet was sold by m², the salesman 

measured the length of a square room and added 1 m² for error. How many square metres were sold? Here the 

change is: length → squared → 1 is added. 

This gives a function machine with the following changes. 

 

If we only deal with positive numbers, this change can be reversed as follows. 

 

What is 36% of $85? 

$85 
×0.36
→    = $30.60  

If petrol is $1.65 per litre, how much petrol can you buy for $90? 

?L 
×$1.65
→     = $90 

?L 
÷1.65
←    = $90 

? = 54.54 litres 

The ratio of sand to cement is 7:2. How much sand for 24 tonnes of cement? 

sand 
  × 

2

7 
→   cement ? tonnes sand 

  × 
2

7 
→   = 24 tonnes cement 

 ? tonnes sand 
  ÷ 

2

7
←   = 24 tonnes cement 

 ? =
24

1
×

7

2
= 84 tonnes of sand 

If 36% is $85, how much is 100%? 

$?  
×0.36
→    = $85 

$236.11
÷0.36
←    = $85  
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We can even solve this simple problem by backtracking: If 26 m² was ordered, what was the length of the square 

room? 

 

3.2 Very early change and function activities 

Change and functions covers operations as change and is designed as a precursor to functions. The sequence for 

teaching is to move from unnumbered to numbered activities, addition and subtraction to multiplication and 

division, and one operation to multiple operations. It introduces input–output tables and arrowmath notation. 

It develops inverse of one operation, inverse of sequence of operations, and backtracking to solve for unknowns. 

It relates arrowmath notation to equations, and graphs the results, relating all aspects in all directions. It 

continually relates symbols and models back to everyday situations so that it can model reality. Finally, it allows 

change to be generalised into a rule using algebraic notation, thus introducing variable and leading to function.  

The early years are when unnumbered activities are used to develop the language of change (the words change, 

input and output) and the notion of what change and reversing change are.  

3.2.1 Introduce notion of change 

Discuss with students how things change (e.g. we clean things, we grow things, weather gets hotter, things are 

moved around, we change clothing, change hair colour, and so on). Discuss before and after – before washing 

hair, after washing hair, before putting on a dress, after putting on a dress. Take photographs – use these as 

before and after discussion points (e.g. what happened here?). Look at relationship patterns – what goes with 

what? For example, shoes with feet, shirts on bodies, hats on heads, and so on. Focus on how before and after 

have to be related in some way.  

Play card games like “switch” (or its commercial form, UNO). If a spade is put down, you have to follow it. To 

change suit you can put the same value on top, and so on. Play Snakes and Ladders – things change if you land 

on a snake or a ladder.  

3.2.2 Unnumbered change activities 

Set up a function machine that will have an input and output and a rule for 

change, see example on right for whiteboard. 

Give students a small copy of the board to record their changes (doing this 

with a small chalk board was very successful in one school). 

Choose an unnumbered change and put this in the RULE box. Discuss what 

input and output are – act out some changes. Have students walk in on the 

left with a picture of a thing to be changed and stick this on input. Discuss 

what it could change to. Give students a picture of this change to put on 

RHS. Students should also record on their recording sheets or chalk boards, 

the input and output (the In and the Out). 

Examples of unnumbered change include: 

(a) lower case to capital letter (e.g. input h and output H); 

(b) “cook it” (e.g. input a picture of a potato and output a picture of chips);  

(c) “wash it” (e.g. dirty car to clean car); 

RuleIn Out

Whiteboard

Change
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(d) “wear it” (e.g. hand to glove, foot to shoe); 

(e) add “at” (e.g. b to bat, fl to flat);  

(f) add “ing” (e.g. r to ring , s to sing); and  

(g) move first letter of word to end of word. 

Involve students in bringing out picture cards (or potatoes or letters or whatever is relevant for the RULE) and 

working out what the output will be. Get students to discuss what is happening, and encourage students to think 

of things to change and even to think of changes.  

Note: Attribute logic blocks or pattern blocks can also be used – changes can be blue to red or large to small or 

triangle to square. The problem here is that attributes that are not mentioned should not change.  

3.2.3 Inverse of unnumbered activities 

Use the function machine from 3.2.2 above to look at the notion of inverse. Make up a matching set of pictures 

before and after cooking (e.g. pasta in a packet to spaghetti bolognaise, and so on). Organise students to come 

out front and pick an input card. Get students to show the picture to the class and stick it on the input side of the 

table. Discuss what would be on the output side. Select the likely picture from output cards.  

After doing this for some time, ask students to select an output card and stand on the RHS. Discuss what the 

input card could be. Repeat this as often as required. Initially, get students to think what input could give this 

output, e.g. We have mashed potato, what could we cook to get this? But after a while, get them to “think 

backwards”, e.g. What do we get when we “uncook” the mashed potato? 

This is easier done with, for example, the “add at” RULE. Here, input of s goes to output of sat – we have “added” 

the “at”. When we look at an output of rat, it is fairly straightforward to consider removing, or “taking away”, 

the “at” to find an input of r. Similarly, input and output makes h a capital H if “capitalise” is our change rule, and 

we can think of output to input as “uncapitalising”, e.g. R to r. Practice with many activities. 

3.2.4 Extending change 

There are two ways we can begin extending what we have done in the above.  

1. Consider two changes – one after the other (e.g. two function machines together), for example: 

 

Now students can move through two changes – first change from b to B and second change from B to Bat. 

Can also try to reverse both changes, e.g. if we ended with Fat, then this goes back to F and then f. (It should 

be noted that changes like e to Eat could be challenging as well as fl to Flat.) 

2. Consider bringing in number. This could be done initially by adding two 

extra counters or removing three counters from plastic bags with counters, 

or using input and output cards showing sets of counters, as for the function 

machine on right.  

For this function machine, an input of 4 counters would give an output of 6 

counters, while an output of 9 counters comes from an input of 7 counters.  

h        HIn Out

Change

b B

add 2 
counters

In Out

Change

7 
counters

9 
counters

Add “at”In Out

Change

B Bat
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3.3 Early to middle linear change and function activities 

In the early to middle years of primary, change and functions work progresses to include numbered activities – 

first with the operations of addition and subtraction and then with multiplication and division. The numbered 

activities begin with one operation and involve presentation of change with formal symbols for the first time. 

Then the activities move on to two-operation function machines. At all times, it is important that this work begins 

from reality (from real-world problems), involves tables, inverse and arrowmath, and reverses everything 

(problem  rule for change, and rule for change  problem).  

3.3.1 One operation – addition and subtraction 

Discuss with students how addition and subtraction could be thought of as change. For example: What happens 

if you have two more toys or dollars – what if you start with 3 toys or 3 dollars? What does 7 toys become if you 

give 3 toys to a friend?  

Set up a function machine that adds or subtracts a small 

number. The whiteboard function machine is still excellent 

but for this we will move on to the “robot” function machine. 

Basically it is a large box (in which students can stand) with a 

small “head”, two openings each side, a rule hung around the 

neck or from the top (if there is no “head”) as in example on 

right. 

Two card sets are made – numbers 1 to 20 for input cards and 1 to 30 for output cards. Students, in twos, bring 

an input card to LHS of robot and place it in the opening. Students inside add 3 and push output card out RHS 

opening. Remaining students have a calculator to check that correct change has been made (e.g. 6 to 9) and a 

worksheet on which to record input and output numbers.  

The following is a sequence of activities found useful. 

1. Give students a real-world problem that adds/subtracts a small number. For example, It costs $5 to have a 

present wrapped. What is the total cost of present and wrapping? Discuss what we can do with this. [We 

cannot get answer as is but there are two things that can be done: (a) if given the present’s cost, we can 

work out the total cost, e.g. present is $36, total cost is $41; and (b) if given the total cost, we can work out 

the present’s cost, e.g. total cost is $24, present is $19.] 

2. Students consider problem as a change – ask “what is the 

operation” and then draw a function machine as on right.  

3. Act out change with the function machine. Organise a student to go into robot with output cards. Give other 

students input card numbers and ask them to bring them out front, in turn, to Input and then collect a 

changed card at Output.  

4. Fill in input–output table. Students should follow the function machine activity with a calculator, checking 

calculations and filling in input–output tables. Ask students to complete tables without watching a student 

at the front use the function machine.  

5. Reverse the change. Teacher directs a student to collect an output card without showing input. Ask class 

what was the input card. Walk the student backwards from Output to Input as you are doing this. Discuss 

options and how to find this inverse number. Teacher provides a series of input and output numbers for 

students to fill in on their input–output tables. Have large numbers as part of this. 

6. Develop inverse. Teacher leads discussion on quick ways to find the inverses and encourages students to 

see that –5 gives inverse of +5.  

Present Total Cost+5

+ 3

INPUT 
Side

OUTPUT
Side
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7. Use arrowmath notation. Students are directed to write both 

changes as arrowmath diagrams using examples (as on right). 

8. Generalise the change and its reverse. Choose a student and 

ask to go to Input on function machine. Tell other students that this student has a number to input but does 

not know what it is. Get class to discuss what the output would be. Do the same for any output number – 

what would be the input? Give students a variety of large numbers to say what the change would be. Get 

students to write their rules in language.  

9. Move on to symbols (but do not push for accuracy or for everyone getting the answer). Ask what the output 

would be if input was 𝑛? Ask what the input would be if output was 𝑘? See if students can write 𝑛 + 5 and 

𝑘– 5.  

10. Reverse everything. Give students a generalisation of a change (can give it as language or as examples of 

numbers). Ask the students to represent the change and its inverse, with examples, using arrowmath 

notation, fill in an input–output table for some values, draw the change as a function machine, and create a 

problem for it. For example:  

Input 𝑛  → 𝑛 − 3 Output 

6 
−3
→ 3  11 

+3
←  8 

Change Inverse change 

 

 

3.3.2 Arrowmath activities 

It is useful for students to think of operations as change. So build the idea of “arithmetic excursions”, travelling 

from number to number by actions or operators, as below.  

2 
+7
→  9 

+26
→   35 

−2
→  33

+61
→   94 

Some ideas for arrowmath excursions include using calculators to:  

(a) go from 2 to 62 by 4 changes; 

(b) go from 68 to 1001 by 7 changes; 

(c) go from 687 to 23 going through 2099 on the way; and 

(d) make a long journey from 3679 to 9763 passing through 2 000 001 on the way. 

Encourage students to use calculators without first working out in their head where they are going. The aim is 

for them to understand that making a number larger is achieved through adding, multiplying, or dividing by a 

fraction; similarly making a number smaller is achieved by subtracting, dividing, or multiplying by a fraction. If 

they get a decimal, just subtract it on the next move. 

Use arrowmath notation to study principles for a variety of numbers. Some examples of activities are below. 

1. The following examples use ? to represent “any number”. 

(a) Does the change on the left give the same output for given input as the change on the right? 

  ? 
×4
→   

×3
→   ? ?  

×3
→   

×4
→  ? 

(b) Does the change on the left give the same output for given input as the change on the right? Relate this 

answer to (a) – what does this mean?  

Input Output 

5 2 

10 7 

18 15 

 84 

112  

6 11
+5

Change

-5

Inverse change

138

Input Output

2 5

7 10

15 18

84

112

- 3
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  ? 
×4
→   

+3
→   ? ?  

+3
→   

×4
→  ? 

2. Reverse arrowmath excursions and use arrowmath to study inverse, as below.  

6 
×8
→  48 

+64
→   112 

÷4
→  28 

6 
÷8
←  48 

−64
←   112 

×4
←  28 

3. Importantly, there is a need at the end of middle school to begin relating arrowmath notation to equations, 

as below.  

 Change 6 
×8
→  48 

+64
→   112 

÷4
→  28 is  

6×8+64

4
= 28 

 Inverse  6 
÷8
←  48 

−64
←   112 

×4
←  28 is  

28×4−64

8
 = 6 

3.4 Later linear change and function activities 

In the final years of P–9, change and function activities are used to generalise, introduce variable and algebraic 

expressions, draw graphs, and introduce functions. 

3.4.1 One operation – multiplication and division 

This repeats the activity from “One operation – addition and subtraction” (section 3.3.1). The function machine 

is set up for changes like ×5 and ÷4. The input and output cards have to be specifically selected. For change ÷4, 

input cards are 4, 8, 12, 16 and so on to 80, while output cards are 1 to 20. As for addition and subtraction, a 

student is put in the robot function machine while other students bring up input cards and receive output cards, 

and later bring up output cards in order to work out the inverse that gives the input. The idea is to cover the 

steps described below (using example of ÷4): 

(a) start with a real-world problem; 

(b) draw and set up a function machine for this problem; 

(c) fill in an input–output table; 

(d) draw arrowmath diagrams (forward and reverse); 

(e) conceptualise inverse as ×4; 

(f) generalise change in language and using variables, e.g. 𝑛 ÷ 4 for input 𝑛, and 𝑘 × 4 for output 𝑘; and 

(g) reverse the whole process – go from, say, 𝑛 × 3 right through to real-world problem. 

Use calculators for arrowmath excursions, similar to the activities in section 3.3.2; for example, Go from 654 to 

268 by multiplications only. 

Two function machines – all operations 

This repeats the activities from one operation (sections 3.3.1, 3.3.2 and 3.4.1) for two operations using two 

function machines, for example:  

 

This means that there are three columns in the input–output table and three 

generalisations, see above right for example (circled item is starting point). 

x 3

INPUT OUTPUTMIDDLE

+ 4

Input Middle Output 

7 21 25 

64 192 196 

𝑛 𝑛 × 3 𝑛 × 3 + 4 

𝑝 3𝑝 3𝑝 + 4 

𝑘 − 4

3
 

𝑘 − 4 𝑘 
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Inverse is important here, as is the arrowmath, as it shows that, as well as inversing all operations, the order of 

the operations is also reversed, e.g.  

6 
×3
→  18 

+4
→  22  11 

÷3
←  33 

−4
←  37 

 1st 2nd 2nd 1st 

Once again it is important to go both ways: (a) from real-world problems to drawing to table to arrowmath 

diagrams to generalisation; and (b) then reverse from a generalisation to arrowmath to table to drawing to real-

world problem. Do not be tempted to miss the real-world problem; it is crucial to relate the function machine to 

everyday life. 

Note: For middle years, do not expect or require students to successfully generalise for a variable 𝑛. Students go 

through the following stages in generalising:  

Not being able to generalise 

Quasi-generalisation – doing it for any number given 

Saying it in language 

Writing it with letters 

3.4.2 Two operations and backtracking 

This activity repeats and extends the earlier activities by formalising the process of backtracking. The steps are 

as follows. 

1. Begin with a two-operation problem: I bought every student a Child’s Meal for $3 and myself a Burger Meal 

for $7. How much did I spend? 

2. Discuss what can be done with this problem; encourage students to realise that if they know how many 

students, they can work out how much was spent; and if they know how much was spent, they can work out 

how many students. Discuss that these can be expressed as changes: forward – students to spending; and 

backward – spending to students.  

3. Work out operations used and construct/draw function machines, e.g. robots as below. 

 

4. Do examples and record on input–middle–output tables. Students in robots with 

cards act out what happens. Other students check with calculators as well as record 

on tables. Note that in the table on right, the circled numbers are given and the rest 

have to be worked out and filled in.  

5. Look at reversing the process. Again act this out, check with calculators and record 

on input–middle–output tables. Again, the circled numbers are given and the rest are 

worked out and filled in by students.  

Discuss with students until they see that reversing involves the inverse of the 

operations, e.g. ×3 goes to ÷3 and +7 goes to –7. Also ensure students see that order 

of operations is reversed, e.g. ×3+7 goes to –7÷3. Get students to stand on Output side with say 22 on a card 

and walk them backwards to the Middle and the Input side showing the inverses as the students walk 

backwards. Introduce the term “backtracking”. 

x 3

INPUT OUTPUTMIDDLE

+ 7

Input Middle Output

3 9 16

11 33 40

156 468 475

Input Middle Output

5 15 22

9 27 34

18 54 61
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6. Record forward and backward (reverse) as arrowmath, e.g. 9 
×3
→  27 

+7
→  34   and   18 

÷3
←  54 

−7
←  61. 

7. Generalise the forward and backward changes by using letters and requiring 

students to complete input-middle-output tables as on right. Again, the circled 

letters are starting points – the rest are worked out. 

8. Reverse everything – start with a generalisation, e.g. 2𝑛 + 3, and work through 

arrowmath, chart and function machine to a real-world problem. 

9. Use backtracking to solve real-world problems as follows. 

(a) Start with problem: Each team member is to carry 3 litres of water and a truck is to carry 25 litres. How 

many in the team if there are 58 litres of water to be carried? 

(b) Put this into arrowmath notation: ? 
×3
→   

+25
→    58 

(c) Reverse this (backtrack) to show there are 11 team members:  11 
÷3
←  33 

−25
←   58 

(d) Use a worksheet where one of the four columns below is filled in and the rest are completed by 

students. 

Real-world Problem Forwards Arrowmath Backwards Arrowmath Solution 

    

    

    

Motivating activity 

Use the inverse of change and relation to equations to 

make up “talking calculator” activities. Discover which 

numbers upside down form letters (e.g. 0 is O, 1 or 7 is L, 

3 is E, 4 is h, 5 is S, 8 is B). Make up a number which upside 

down is a word (like “shells”). Take this number, make 

changes to it with an arrowmath excursion and follow 

these with calculator. Reverse the sequence of changes and write as an equation – it should equal the original 

number but leave this place blank (i.e. do not show the original number as the answer to the reverse calculation). 

Google “talking calculator” for more examples. 

3.4.3 Guess my rule 

As well as starting with a real-world situation, it is useful to start with the changes, determine the change rule and 

then construct a real-world situation. This is an example of reversing. To do this, follow the procedure below.  

1. Teacher states that he/she has a change in his/her mind (a change rule). To reduce the number of 

probabilities, it can be useful to restrict numbers to 1, 2, 3 or 4, i.e. 4 × 𝑝 + 1, 
𝑝

3
 and so on. 

2. Teacher asks students to give him/her a number one at a time. The teacher then begins 

to fill in an input–output table and gives the output back to the student. For example, 

see table on the right. 

3. Students have to identify the rule. (Note: May have to restrict the number of guesses 

from each student.) 

4. Students have to construct a function machine for the change rule and a problem that leads to the function 

machine operations. 

Input Output 

2 4 

7 19 

11 31 

Input Middle Output

n 3n 3n + 7

p 3p 3p + 7

k-7
3

k - 7 k

 

What do you find on the  
beach? 

Reverse 
Calculation 

Hint 
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Note: For the example above, the rule is ×3 and −2, so the problem for this could be: I bought bottles for $3 

each and received a $2 discount. This can require students to work a problem in a given context (e.g. school, 

sport, shopping, fishing, and so on). 

5. Worksheets can be set up for students to practise this on their own. For example:  

(a) Look at the input–output table on the right. 

(b) Determine the change rule. 

(c) Construct a problem that leads to this change rule (driving cars context). 

6. This can also be practised in the form of a group game for four players: 

(a) One player (called the rule setter) chooses a rule (e.g. ×2 +3).  

(b) Other players in turn give numbers to be changed (e.g. give 4, rule setter gives 11). 

(c) After each number is given, the player gets a chance to guess the rule. 

(d) The rule setter scores the number of guesses it takes for the group to guess the rule correctly. 

(e) The role of rule setter moves to the next person clockwise.  

(f) After a few rounds, the highest score wins.  

Note: “Guess my rule” can be played with logic blocks (see Chapter 2 of the YDM Number book). 

3.4.4 Linear equations and backtracking 

The first stage here is to relate real-world problems to equations. 

1. Begin with arrowmath excursions, e.g. 6 
×5
→  

−16
→   14 

2. Write these as equations and discuss relationship between arrowmath and equations: 6 × 5 − 16 = 14 

3. Introduce letters into arrowmath, e.g. 𝑝 
+6
→   

×4
→   88 

4. Write these as equations: (𝑝 + 6) × 4 = 88 

5. Solve these by backtracking (gives 𝑝 = 88 ÷ 4 − 6 = 22 − 6 = 16): 𝑝 
−6
←   

÷4
←   88 

The second stage is to translate real-world problems to equations and solve by thinking backtracking. 

1. Give problem: 4 teams of players plus 9 adults got on buses. There were 57 people on the buses. How many 

in each team? 

2. Translate to arrowmath and equation (have to identify unknown and give it a letter, e.g. 𝑡): 

? 
×4
→  

+9
→  57       𝑡 × 4 + 9 = 57     or     4𝑡 + 9 = 57 

3. Backtrack to get 𝑡: 𝑡 
÷4
←   

−9
←   57 

The third stage is to go from equations to answers by thinking backtracking, as shown below. 

Equation:   2𝑥 + 5 = 17  𝑥 = 17 − 5 ÷ 2 = 6 

 

Thinking:  𝑥
×2
→  

+5
→  17 6 

÷2
←  12 

−5
←  17 

 

However, it is always important to relate to real-world situations. 

Input Output 

4 4 

7 5
1

2
 

13 8
1

2
 

22 13 
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Function machines and graphing 

This extends the above activities to graphing and functions. The steps are as follows. 

1. Start with a problem: Five fishermen each caught the limit of fish. They gave 7 fish away. This left them with 

33 fish. What was the limit? 

2. Translate to function machine (i.e. translate problem to changes) and identify change operations. 

 

3. Complete input-middle-output table, identify reverse (inverses), and write change as arrowmath and 

equations and use backtracking (or reverse equation) to solve the problem for an unknown (in this example 

we use ? for unknown, but could use a letter).  

?  
×5
→   

−7
→   33             8  

÷5
←   

+7
←   33 

5? −7 = 33           ?=  
(33+7)

5
= 8 

4. Generalise forward and backward change, e.g. input 𝑛 gives output 5𝑛– 7. Output 𝑘 gives input 
𝑘 + 7

5
. Practise 

this also.  

5. Reverse from and to this point. Start from a generalisation, e.g. start with ? × 3 − 5 (or 3𝑛 − 5), fill in an 

input–output table, write arrowmath equations, draw the function machine and then develop a real-world 

problem that leads to this generalisation via a function machine. Go both ways. 

6. Extend to graphing. Start from a problem, construct function machine, table, arrow equations and 

generalisation. 

(a) Fill in an input-middle-output table. Use table points to 

plot a graph (as below and on right for 5𝑛 − 7) 

 

(b) Do this a few times and relate the equations to the slopes and 𝑦-intercepts of the graph. For the example 

3𝑛 − 5, the slope is 3 and the graph cuts the y axis at −5. 

(c) Notice the generalisation: equation 𝑦 = 𝑚𝑥 + 𝑐 gives graph with slope 𝑚 and 𝑦-intercept 𝑐. 

7. Reverse by going from graph to problem and then problem to graph again. 

  

x 5 - 7

Input Middle Output

1 5 -2

2 10 3

3 15 8

4 20 13
-5

0

5

10

15

20

1 2 3 4 5 6
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3.4.5 Linear functions and reverse linear functions 

Functions can be considered in this “change” way by the following steps. 

1. Look at change from 𝑥 to 𝑦, as follows: 

(a) A function 𝑦 = 4𝑥 − 7 can be considered as a change from 𝑥 to 𝑦; for this example, the change is × 4 −

7. 

(b) This can be written in arrowmath as on right: 𝑥  
×4
→   

−7
→   𝑦 

2. New notation can then be introduced to represent function as 𝑓 with 𝑓(𝑥) to denote variable being used, 

that is:  

𝑓(𝑥) = 4𝑥 − 7  is the same as  𝑥 
×4
→   

−7
→   𝑓(𝑥) or 𝑦 

3. This leads to tables and graphs as below. 

 

4. Use to find inverse function. A function, like an equation, can be used to construct input–output tables and 

to draw graphs. Backtracking can be used to find the inverse function as below. 

 

Thus, if we stay with 𝑥 as variable for all functions and label the inverse function as 𝑔, we have inverse 

function for 𝑓(𝑥) = 4𝑥 − 7 being the backtracking: 

𝑔(𝑥) =  
𝑥 + 7

4
 

5. Reverse everything by starting from function or graph and using these to construct arrowmath notation for 

change and reverse change, input–output table, drawing of function machine, and story (real-world 

situation). Then go back the other way.  

6. Developing relationships between change rules and characteristics of graphs of linear functions can be 

done using the same approach as in the later linear patterning activities (section 2.4). For example, we can 

show that, for change rule 𝑦 = 4𝑥 + 7, the slope of the graph is 4 and the 𝑦-intercept is 7. (Note: In many 

ways function machines do what patterns do – focus attention on the relationship between input/position 

and output/term – however, function machines do this randomly while patterns do 0, 1, 2, 3, and so on, in 

order.) 

x f(x)
or  y

0 -7

1 -3

2 1

3 5

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

0 1 2 3
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3.5 Function applications and nonlinear change 

This section looks at applications of the function machine approach to percent, rate and ratio and nonlinear 

changes. 

3.5.1 Applications 

One of the major big ideas of mathematics advocated by YDM is that all maths ideas can be conducted as 

relationships or changes. Thus, we can represent most problems in a change format:  

 

start   end 

Problem types 

If we can do this, then problems are easy to solve because they are based on three types: 

 Type 1 problems (end unknown) are solved by multiplying the start by the change. 

 Type 2 problems (start unknown) are solved by dividing the end by the change (reversing the change).  

 Type 3 problems (change unknown) are solved by dividing the end by the start (relationship between 

start and end). 

One of the most prevalent and difficult problems with operations is multiplicative comparison which is: 

 

start   end 

Here, the problem types are even simpler: 

 Type 1: start × multiplier 

 Type 2: end ÷ multiplier 

 Type 3: end ÷ start. 

Interpreting 

So now we simply have to interpret the multiplicative value problems in terms of multiplication. There are three 

types of multiplicative comparison problems prevalent in upper primary, junior and secondary schools which are 

percent, rate and ratio. Interpret the problem in terms of change as follows. 

Percent 

 

amount                      percentage 

e.g. 85% of $640 is ?     $640 × 0.85 → ? 

Rate 

 

“per” attribute                    original attribute 

e.g. carrots are $3.65 per kg, how many kgs can be bought for $20? 

? kg × $3.65 → $20 

Ratio 

 

1st attribute                                      2nd attribute 

e.g. flour:butter = 3:2, how much flour is needed for 1 kg of butter? 

? flour × 
2

3
 → 1 kg of butter 

change 

multiplier 

× percent 

× rate 

× 2nd number / 1st number 
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This approach means that all problems can be quickly solved if put into a change perspective. 

(a) John sold his house for $480 000 which was a 27% profit. How much did it cost? 

$? cost 
×1.27
→    $480 000     so     $? cost = $480 000 ÷ 1.27 

(b) Petrol was $1.65 per litre. How many litres can be purchased for $100? 

? litres 
×1.65
→    $100     so     ? litres = $100 ÷ 1.65 

(c) Sand and cement is mixed 7:2. How much cement for 20 tonnes of sand? 

20 tonnes sand 

2

7
→ ? cement     so     ? cement = 20 × 

2

7
 tonnes 

3.5.2 Nonlinear changes (Challenge) 

Function machine activities can be repeated for nonlinear changes (e.g. quadratics and cubics). 

Look at the problem from section 3.1.3: The carpet was sold by m², the salesman measured the length of a square 

room and added 1 m² for error. How many square metres were sold? This is the quadratic 𝑛2 + 1. Go through 

the following steps: (1) construct function machine, (2) complete table, (3) construct arrowmath notation, (4) 

see if will backtrack, (5) construct a graph, and (6) reverse the procedure. 

This problem will meet the requirements of the function machine – it even backtracks. 

Consider another problem: John bought USB memory sticks for his school. He paid the same price per stick as the 

number he bought. Then he also bought an extra 4 sticks for himself at the same price. How much did each stick 

cost? 

1. Construct the function machine:  

2. Complete the input-middle-output table: 

Input Middle Output 

$7 sticks 7×7=49 7×7 + 4×7=77 

4 4×4 4×4 + 4×4=32 

11   

9   

  96 

 25  

𝑝   

  𝑘 

3. Construct arrowmath symbols and equations: 

𝑝 
𝑠𝑞𝑢𝑎𝑟𝑒
→     𝑝2  

+4𝑝
→   𝑝2 + 4𝑝  

𝑦 = 𝑥2 + 4𝑥 

4. See if there is backtracking. In this example, there is no reversing of the arrowmath change because we do 

not know what 𝑝 is. However, 𝑝² + 4𝑝 = 𝑝(𝑝 + 4), so we are able to use this for backtracking. 

If the output is 45, then the input is 5 because 45 = 5×9 and 9 is 5+4, that is, 45 = 5(5+4).  

What is the input for the following outputs? 

(a) 21   (b) 192    (c) 320    (d) 515 
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5. Construct a graph of change by plotting points from the input–output table. The graph should be part of a 

parabola, as below. 

 

6. Reverse the procedure. Provide students with the graph for a 

quadratic, say  
𝑥2

5
+ 2 (see graph on right). Then the students 

have to do the following:  

(a) write the equation; 

(b) put equation into arrowmath notation; 

(c) fill in an input–output table; 

(d) draw a function machine; and  

(e) write a problem that gives the function machine and leads 

to the equation. 

Note: 𝑦 =
𝑥2

5
+ 2 is 

𝑠𝑞𝑢𝑎𝑟𝑒
→     

÷5
→  

+2
→ , that is 𝑥 

𝑠𝑞𝑢𝑎𝑟𝑒/5
→       

+2
→  . If reversed, it is  

√
←   

×5
←   

−2
←  𝑦. This could also be seen 

as three function machines: 

 

 

 

0

20

40

60

80

100

120

140

160

0 1 4 7 10

square +2

square root 5 –2

0

5

10

15

20

25

0 1 4 7 10
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4 Equivalence and Equations 

Equivalence and equations explores how to represent everyday life in terms of relationships. Thus, it studies the 

symbols, notation and rules for equations (number sentences with equal signs). In the long run, this is equations 

with numbers, operations and letters. To get to this point requires the study of the following:  

(a) equations in arithmetic (no variables or letters);  

(b) equations with unknowns for which calculation is in arithmetic form (called pre-algebra by some 

curricula); and  

(c) equations with variables where calculation is in algebraic form (considered to be full algebra). 

It is imperative that students learn symbols as ways of telling stories about everyday life. Initially, the symbols 

will be as in arithmetic (e.g. numbers and operation symbols). However, as problems move to where not all 

numbers are provided (e.g. I bought a hat for $88 and a coat and spent $227 altogether), the symbols will include 

unknowns (pre-algebra) and variables (algebra).  

Thus in this chapter, we look first at the meaning of equals, greater than and less than, at number sentences with 

these symbols (equations and inequations), and finally at their principles (properties). Then the balance rule is 

introduced (first for unnumbered situations and then for numbered), and used to find unknowns. This leads to 

the method of solving equations which has the widest application because it can be used with variables on both 

sides of the equations. The chapter concludes with nonlinear equations (those with variables as squares or 

cubics), and sets the scene for modelling algebraic situations. This sequence is shown below. 

 

The physical balance and length materials restrict the operations that can be used for addition, subtraction and 

simple multiplication. They are also kinaesthetic and time consuming – excellent for beginning the teaching. The 

diagrams of balances and number lines enable more activities to be completed but still have restrictions on 

operations. Thus, it is important that students understand that the balance and the lines must become abstract 

mathematical balances and lines and able to represent any operation (including division). This means combining 

the abstract balances/drawings with equations. This leads to the final step which is to dispense with materials 

and just use equations. 

The chapter begins with the major ideas and models (section 4.1) and then, similar to other chapters, looks at 

very early equivalence and equation activities (section 4.2), early to middle equivalence and equation activities 

(section 4.3), and later equivalence and equation activities (section 4.4), before finishing with nonlinear 

equations, formula activities and modelling (section 4.5). 

Equals, equation and inequation (relation to reality)

Principles (equivalence and order)

Unknown/Solving linear equations

Modelling algebraically

Nonlinear equations/Formulae

Balance rule (unnumbered → numbered)

Materials
Physical balance/Lengths

Pictures and counters/
Number lines

Abstract ‘Math’ balance/
Drawings/Equations
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4.1 Major ideas and models 

This section covers major ideas, lists sequences of activities, discusses the main models, and looks briefly at 

nonlinear equations. 

4.1.1 Major ideas 

Equivalence and equations covers developing understanding of number sentences involving numbers, 

operations, variables, and equals, greater than and less than signs. These are called equations, inequations and 

expressions, and are defined as follows.  

(a) An equation is a sentence, usually involving numbers, operations and variables, that has an equals (=) 

to show a relationship between two things (e.g. 2 + 3 =  5, 2𝑥 + 𝑦 = 16 + 𝑦2).  

(b) An inequation is an equation with greater than or less than symbols (< or >) showing an order 

relationship (e.g. 2 + 3 > 4, 2𝑥 + 𝑦 < 16 + 𝑦2). 

(c) An expression is one side of an equation; it has numbers, operators and variables but no equals or 

greater or less than symbols (e.g. 2 + 3, 16 + 𝑦2). Thus an equation is the equivalence of two 

expressions and an inequation is an order relationship between two expressions. To study equations 

and inequations is also to study expressions.  

The major ideas to be covered in equivalence and equations deal with using equations to model real life and 

manipulating and solving the equations to solve these real-life problems. The sequence of activities designed to 

build this understanding and proficiency is as follows: 

(a) introducing the notion of same and different and relating this to introduce equal, unequal, greater than 

and less than in length and mass (balance) situations; 

(b) using mass and length in unnumbered situations to build understanding of equals and equations and to 

develop the equivalence and order principles; 

(c) using mass and length in numbered situations to build understanding of arithmetic equations and 

reinforce the equivalence and order principles in numbered situations; 

(d) relating arithmetic equations to real-life situations and vice versa (e.g. telling stories about the world); 

(e) using mass and length models to introduce the balance principle that equations stay equal if the same 

thing is done to both sides of the equation; 

(f) using mass and length models to introduce unknowns, and relate equations with unknowns to real-

world situations and vice versa; 

(g) extending mass and length models to mathematical versions (in picture form) where all operations are 

possible; 

(h) using the balance principle to find solutions to equations with unknowns; 

(i) developing rules/principles that enable expressions to be manipulated (including simplification and 

substitution); and 

(j) introducing graphical representations of equations and showing how graphs, equations and everyday 

life relate.  

4.1.2 Main models 

The main models to be used are mass (the balance beam) and length (strips of paper and the double number 

line). Each of these will now be described. It should be noted that each of these models has to move from physical 

model to virtual or pictorial model and then to abstract maths model. 
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Mass 

The materials/pictures begin with real balances (which can only really cover adding and some subtracting) and 

move on to pictures of “mathematical balances” (which can cover all operations) added with symbolic equations. 

Equals is shown by the balance being “in balance”, and not equals by the balance being “out of balance” (see 

examples below). 

 

The balance is good for developing the balance rule and, in picture form, handling all operations. 

 

Virtual balances are also available online which provide a combination of the movement of the real balance with 

the range of operations available when using the picture balance. 

Length 

The materials for this model are strips of paper and single and double number lines (see below for diagrams). All 

these length models can handle addition and subtraction and the line and double number line can handle simple 

multiplication as well. However, more complex operations (particularly if they go into negative) are not possible. 

The number lines can be horizontal as shown here or vertical as shown later. The vertical line has the advantage 

of enabling an = sign to be placed under it and a left-hand and right-hand side to be identified (as in an equation). 

 

 

Length is also a useful material for teaching the balance principles, for example: 

2    +     4 6

balanced

Remove 1 
from the left 

hand side 6

1   +   4
Remove 1 
from the 

right hand 

side
unbalanced

1    +     4 5

balanced
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4.1.3 Advanced models 

As we go up the years, the equations become more complicated. Physical balances and number lines can be used 

to show and solve simple equations, usually linear. But it is difficult to use them to show subtractions, divisions, 

complicated multiplications, and nonlinear examples such as quadratics. At this point, we need to move on to 

imaginary extensions of balances and lines, where anything is possible. One can subtract, divide, multiply, and 

go into negatives and so on. Anything mathematical is allowed.  

 

One simply thinks of the expressions being in balance or of the same length. So we can subtract 2𝑥 from both 

sides and then square root both sides. For example: 

 

 

 

Once we have unknowns or variables, we can introduce models for unknowns. The following are useful: 

(a) a bag covered in question marks into which weights can be placed to act out ? + 3 = 11; 

(b) boxes of various shapes into which counters could be placed to act out   + O + 4 =  + 7; and  

(c) cups  and counters O to act out equations with variables (cup acts as variable and counters as ones) to 

act out  +  + OOO =  + OOOOO.  

4.1.4 Nonlinear models 

For nonlinear examples such as quadratics, we can use advanced models but there is also an opportunity to think 

of algebra in terms of area, for example:  

𝑥(𝑥 + 1) is 

 

 

 

is 𝑥2 + 𝑥 

This leads to two models: 

(a) area model for multiplication so we can multiply and factorise (see above); and 

(b) tiles of three types: 𝑥 × 𝑥, 𝑥 × 1 and 1 × 1 so we can represent quadratics (see diagram below). 

A

B C

A

B D

E

B D

A = B + C remove part 
of C to 

make D

A > B + D remove the 
same part 
from A to 

make E

E = B + D

Maths balance Maths ruler

𝑥2 + 2𝑥 = 2𝑥 + 4 
𝑥2 = 4 

𝑥 = √4 
𝑥 = 2 

Subtract 2𝑥 from each side 
Square root both sides 
(remember negatives) 
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The tiles can be used as follows for example  2𝑥² + 3𝑥 = 𝑥² + 4𝑥 + 2. 

1. Replace the 𝑥², 𝑥 and numbers with tiles: 

 

2. Use the balance rule (allow negative materials) to make the right-hand side 0. 

 

3. Convert the diagram into an equation: 𝑥² − 𝑥 − 2 = 0 

4. Factorise the quadratic to get the answer (see section 4.5). 

4.2 Very early equivalence and equation activities 

Equivalence and equations studies arithmetic (and algebra) as relationships. It builds understandings of 

equations and inequations, unknown and variable, algebraic equations, and the balance principle. The major 

models on which teaching is based are balance (mass) and length models, as discussed in section 4.1. Thus, the 

techniques used in equivalence and equations are similar to the arithmetic principles. Equivalence and equation 

activities can begin in Prep as the following sequence shows.  

4.2.1 Same and different 

1. Students identify objects which are the same and which are different. They learn to describe what is the 

same and what is different about two objects. They sort objects into those that are the same and notice that 

different groups are different.  

2. This understanding of same and different is then 

considered in terms of, particularly, mass and 

length. For mass, the teacher takes two plastic bags 

and places on students’ arms, puts things in the bags 

and allows children to feel when things are the same 

and when they are different (as on right).  

For length, look at objects (e.g. paper strips) and 

see if the same or different lengths. 

1

Small square Long rectangle which 
is the width of the 

small square

Large square whose 
length is the height of 
the tile (i.e. )

—

—

0
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3. Once same and different are understood, the material can be used to introduce the formal language for 

same and different, namely, equals, not equals, greater than, less than. After the formal language the 

symbols are introduced, namely =, ≠, <, and >. For example: 

 

The technique is to discuss what is happening with respect to the balance [it is balanced] and introduce 

words and symbols by sticking the language and symbols on the balance. Relate the notion of balance to 

“equals” and imbalance to “not equals”. Early on in the primary years, similar techniques could be used to 

introduce “greater than” (>) and “less than” (<). 

Length can also be used in this way, but maybe not as strongly. For example: 

 

4. Move hands along the balance to introduce equations for objects: 

 

4.2.2 Unnumbered activities 

1. The first formal activities should not use number; just 

different objects and different lengths. These are explored 

for equals and not equals and, later, greater than and less 

than. Students find different things to balance and not 

balance and record these as “equations” (not in the 

strictest sense), see example on right.  

2. With direction, exploration with materials and objects can be used to find the equivalence principles (see 

below).  

LHS

Balance so that Box  + Ball = 
Jar + Scissors
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As pioneered by Davidov in Russia, unnumbered activities are an excellent way to begin work in a 

mathematics area. The lack of numbers appears to allow the students the freedom to explore structures and 

principles.  

3. Similar work can be done with length and, because of ability to put things side by side, the length model can 

represent some things strongly. For example: 

 

4.2.3 Numbered activities 

1. Once unnumbered situations have been explored, numbers can be introduced by using same-size weights 

(we recommend small cans of baked beans) and same-size lengths (e.g. Unifix cubes). Then use models to 

represent equations with numbers, for example:  

 

It is important to read the equations from the materials, e.g. 2 cans plus 4 cans balances 6 cans so 2 + 4 = 6; 

and to reteach the principles, particularly symmetry: 
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2. Extend the models to inequations (e.g. greater than and less than): 

 

3. As students’ experience grows, extend models to introduce mathematical-balance pictures and double 

number lines which can handle more operations: 

 

Note: We have turned the cubes and the number line vertical because it shows LHS and RHS. This does not 

have to be done but it makes the equation easier to relate to the picture. 

4.2.4 Relating equations to real-world situations 

It is important to relate real-world situations to equations. To do this, relate stories to actual components of the 

equation, for example, see table below. 

STORY SYMBOLS 

Two boys join three others 2 + 3 

Two boys join three others, how many in all? 2 + 3 = 

Two boys join three others to make five boys 2 + 3 = 5 

Two boys join three others and this is the same number as six boys and one leaves 2 + 3 = 6 − 1 

 

A good way to teach the relation of symbols and stories is to use a material context. Two examples are The rice 

and the soap are the same as the pasta and the sugar, and The two weights and the four weights are the same 

as six weights. 
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It is important to reverse this process, for example, What is a shopping story for 3 + 5 = 8? 

 

One can also use length processes, for example: 

 

 

 

4.3 Early to middle equivalence and equation activities 

From the models developed in the early years, activities can now build the important principles for solving 

equations.  

4.3.1 Balance principle activities 

Balances can be used to explore what happens when extra weights (e.g. one weight) are added or removed from 

a balanced equation.  

 

Students can be asked how to balance the equation again. There are three possibilities for the example above: 

(a) put the weight back again (this returns the equation to 2 + 3 = 5); (b) add another weight to the 3 on the LHS 

(this makes the equation 1 + 4 = 5); and (c) remove a weight from RHS (this makes the equation 1 + 3 = 4). The 

third possibility is the beginning of the balance principle and should be the focus of questioning (see diagram).  

 

Rice + Soap = Pasta  + sugar

SR SP

3 + 5 = 8

x x x
x x x x x

2 + 3 = 5

x x

x x x

1 + 3 < 5

x x
x x x

Remove 
one 

1+ 3 = 4

x x

x  x

1 + 3 <5

x  x x

x x
Remove 

one x 

7

4 2

1

2 + 4 = 6

x x
x x

I bought a chocolate for $3 and a 

hamburger for $5, and spent $8. 

There were 7 boys and 1 left, which came to the 

same number as the girls, where 4 joined 2. 

 

 

 

 

 

 

 

 

 

 

‘ 
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Direct the students to add and remove different weights and to rebalance. With questioning, try to get students to 

generalise this process to the full balance principle (e.g. “whatever you do to one side you do to the other”). The 

balance principle can also be introduced and demonstrated with length models (as shown below).  

 

The balance principle can be reinforced with mathematical-balance pictures and double number lines as follows. 

 

 

4.3.2 Relating real-world situations to equations 

It is important to continue to reinforce the relationship between real-world situations and equations. The 

relationship is best taught by experience in which equations are deconstructed into parts and related to stories 

and vice versa (i.e. stories are deconstructed and related to equations). Some examples are as follows. 

Story to equation: I bought 3 chocolates for $4 each and a pie for $6. I 

spent the same as June, who bought a meal for $14 and drinks for $4. 

 

 

Reversing – equation to story: The equation is 2 × ? + 6 = 3 × 8; what story can this tell? 

 

2  + 3 = 5

One from LHS

2  + 2 < 5

One from RHS

2  + 2 = 4

Add 2 to LHS Add 2 to RHS

Subtract 3 
from LHS 9

2

8

8 + 2 < 9 + 4

4

3 x 4 + 6 14 + 4

2 x ? + 6 3 x 8

8
?

?

“My dad and my 
mum gave me the 
same amount of 
money. I already had 
$6, so I was able to 
exactly pay for 3 
meals at $8 each.”

6
8 

8

Subtract 3 
from RHS 9

2

8

8 + 2 = 9 + 1

1

9

5

8

8 + 5 = 9 + 4

4
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One way to reinforce these relationships is with worksheets with headings as below in which teachers fill in one 

space in each row and the students fill in the other spaces. (Note: Students tend to have the most difficulty with 

creating their own stories.) 

 

4.3.3 Introduce unknown and solve it 

Discuss with students what they see an unknown as (students tend to choose “?”). 

Make a bag with the chosen symbol on it (e.g. ?), put in 3 weights and then 

balance it and 2 weights on one side with 5 weights on the other side. 

Discuss that the bag is unknown. Ask how we could find what is in the bag without 

opening it. Most students will know it is 3 because 3 + 2 = 5, but ask students to find 

a way to work it out without this knowledge – state that the numbers could be large. 

Talk about how we can get the unknown on its own. Students can usually see that we can get unknown on its own 

by removing 2 weights and that this means removing 2 weights from RHS as below. 

 

This can be translated to mathematical-balance diagrams and many examples done, for example: 

 

The number line can also do this, first with blocks and then, more abstractly, with double number lines: 

 

? + 2 = 5

x  x x
x  x
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It is quite easy to extend this to more than one unknown and more than one type of unknown (see examples 

below). 

One type of unknown: (? + 7 = 2? + 3) 

 

Two different types of unknowns: (A + B + 3 = A + 7) 

 

At this point, the process can be extended to symbolic equations. The balance drawings are the best way to make 

the transition because they can do all operations. Continue to stress that the drawings show a “mathematical 

balance” that can do all operations.  

Picture  ? notation  Variable notation 

 

 2 ×?+3 = 15   2𝑥 + 3 = 15  

remove 3 and 

 

divide by 2 

−3 

 

÷ 2 

2 ×?= 12  −3 2𝑥 = 12  

 

 ?= 6  ÷ 2  𝑥 = 6  

? + 4 = 8 – 1 ? < 8 – 1 ? = 8 – 5 = 3

A + B + 3 = A + 7 B = 4
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4.3.4 Number-line activities 

At this point, it is useful to introduce single number-line activities. In these activities, the line is used to act out 

real-world situations. For example, I had $20, I spent $8, got an extra $10 and then spent $15, how much do I 

have now? Moving along the line will give the answer.  

 

It is possible to use this number-line model when there is a variable. For example, My Dad gave me some money, 

I spent $12, I received $8, then my Mum gave me the same money as my Dad, how much do I have now? Need 

to come up with a symbol for the unknown – could be 𝑛 or ?. Then the line helps. 

 

The line is useful for teaching inverse. This is particularly so for the inverse that makes an unknown on its own 

when solving an equation such as ? – 3 = 11. For example, How do we change ? − 3 so that we get back to ? on 

its own? The following line work can help students understand, and the line is a good model to explain or act out 

the process: 

 

Thus, the number line can be used to find the answer to unknowns. For example, I went out and bought a CD for 

$23, this left me with $16, how much did I start with? To solve this, make the start 𝑛 and use the line as below; 

𝑛 goes to 𝑛 – 23, this is $16, so +23 to get back to 𝑛 which is $39. 

 

4.4 Later equivalence and equation activities 

In the upper primary and junior secondary years, the skills learnt to model everyday activities and manipulate 

symbols can be widely used. It is a time when skills learnt in different chapters are brought together – balance 

rule and backtracking, equations and arrowmath symbols, expressions and equations.  

In this section, we look at taking the balance rule from models to solving equations for unknowns, sequences 

and materials for moving from arithmetic to algebra (including substitution and simplification), and using 

expressions and equations to model the world. 
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4.4.1 Balance principle and solving equations for unknowns 

This subsection looks at how the balance principle can be abstracted so it does not need to be connected to 

physical balances and lines – to connect it to mathematics as an abstraction. 

Developing a concept from model to abstraction 

The mass model for balance principle should develop as follows so that it goes from reality to abstraction across 

the years of schooling. 

 

The number line model develops the same way:  

 

 

 

 

 

 

 

 
𝑥

4
+ 7 2𝑥 − 1  

𝑥

4
+ 1 = 6 − 𝑥 

 

 

4.4.2 Analysing the balance principle 

To use the balance principle means to understand it and how it relates to other ideas. The following should be 

worked through with students. 

1. Discuss the balance principle. The balance principle states that if something is done to one side of an 

equation, the same has to be done to the other side to return to balance or to equal. Make sure students 

understand this. For example: 

Real balance: no numbers

Can + bag = box + cup

OO  XX
O   XX

Real balance: numbers
(only operations that make sense for balance)

?

Real balance acts out 
number/variables and operations 

that make sense for balance

? 5 11

Mathematical balance
(can do any operation)

numbers/variables

Just equation

G
R B

No numbers 
G = R + B 

Unifix (real) numbers and operations 
that make sense to use Unifix for 

9 = 3 + 6 

Only operations that make sense 
for hopping along a line 

2𝑥 + 3 = 11 

Drawing variables/numbers 
any operation 
𝑥

4
+ 7 = 2𝑥 − 1 

Equation 
variables/numbers 

any operation 
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2. “Same does not mean same”. Ensure students understand that adding the same thing to both sides does 

not have to be in the same form; for example, you could +5 to the left-hand side and +7−2 to the right-hand 

side. Also in the abstract model any operation is acceptable.  

3. Relate equation and expression. Keeping expressions and equations the same uses opposite strategies (like 

addition and subtraction use opposite strategies in compensation). The inverse or equivalence principle for 

an expression states that if the expression is to stay the same value then +0 and ×1 are the only possibilities 

and any change has to be compensated by the inverse change, for example: 

2𝑥 − 𝑦 ≠ 2𝑥 − 𝑦 + 𝑘     but     2𝑥 − 𝑦 = 2𝑥 − 𝑦 + 𝑘 − 𝑘 (because +𝑘 − 𝑘 = 0) = 2𝑥 + 𝑘 − (𝑦 + 𝑘) 

The balance principle for equations and the equivalence principle for expressions, therefore, use the 

opposite strategy to ensure that any change has no effect. That is, to keep things the same, a change is 

repeated (on the other side) for an equation, while a change is undone or inversed (on the same side) for an 

expression. 

4. Solving for an unknown requires both expression and equation understandings. The problem of solving for 

unknowns is that both expression and equation actions have to be done together and they can be mixed up. 

For example, to solve 2𝑦 + 3 = 35 for 𝑦 we need to look first at the expression and then the equation, as 

follows: 

Expression: 2𝑦 + 3 → have to get 𝑦 alone 

  → 𝑦 has been ×2 and +3 

  → so –3 and ÷2 will get 𝑦 alone 

Equation: 2𝑦 + 3 = 35 → to keep balance, −3 and ÷2 on RHS as well as LHS 

  → −3:  2𝑦 + 3 − 3 = 35 − 3 

     2𝑦 = 32 

  → ÷2:   
2𝑦

2
=

32

2
 

        y = 16 

However, some students get this confused and use the wrong rule in one of the parts, e.g. to keep balance 

do opposite; and some students get it doubly wrong but end up with the correct answer, for example: 

  2𝑦 + 3 =  35 →   have to ×2 and +3 to get 𝑦 (should be −3 and ÷2) 

    →   equation means have to do opposite to RHS (should be the same) 

    →   so, 𝑦 = 35 − 3 ÷ 2 = 16 (gets right answer) 

5. Spend time discussing the two principles. Ensure students understand the distinction. If there are problems, 

return the students to the models as in the example that follows.  

Example: Consider 2𝑥 + 3 = 39. The first stage is to 

consider the expression 2𝑥 + 3 and use inverses to get 𝑥 

alone in the expression. This can be done with number line 

as on right. 

×2 +3

÷2 −3
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Then, the balance principle can be modelled on a balance as follows, first subtracting 3 and then dividing by 

2 as the above number line indicates. 

 

6. It is also necessary for students to realise that the inverse of an expression where there are more than two 

operations is not only the inverse of each operation but also the inverse of their order. For example, for 

this change: 

1st expression 
   ÷6    
→      

  +11  
→    2nd expression 

the inverse change is:  

2nd expression 
 −11   
→     

   ×6    
→    1st expression 

4.4.3 Using sequences and materials to move arithmetic to algebra 

To teach algebraic manipulation of expressions, including substitutions and simplifications, it is useful to follow 

the sequences below. 

Sequence 1: Complex arithmetic activities as a step between arithmetic and algebra 

The difference between arithmetic and algebra is that arithmetic expressions have separate processes, e.g. 2 × 

3 + 4, and products (the answer), e.g. 10, while algebraic expressions have processes and products, e.g. 2𝑥 + 4, 

as the same thing. Expressions can be closed (calculated out), e.g. 2 ×3 + 4 is 6 + 4 is 10, in arithmetic but not in 

algebra. This means that, for most students, arithmetic expressions are always simple – a sequence of binary 

calculations to an answer, e.g. 2 × 3 + 4 = 6 + 4 = 10. However, algebra is mostly complex – consisting of 

expressions of two or more operations which cannot be calculated. This means that expressions have to be 

understood as processes involving many operations in algebra, but can be understood as a series of one-

operation products (answers) in arithmetic. 

Thus, we should not teach the traditional sequence from arithmetic to algebra which is really a large jump from 

arithmetic with one operation (which is understood as answers) to algebra with more than one operation (which 

is understood as processes), as in the diagram below: 

 

We should teach it has two paths as in the diagram below (where we spend time with simple algebra and complex 

arithmetic before going on to complex algebra). By complex arithmetic, we mean understanding 2 × 3 + 4 as a 

process and not as 2 × 3 and 6 + 4. 

 

It is difficult to think of complex arithmetic examples because they rely on students not closing on the first binary 

part. An example of a good activity is as below. Arrowmath activities can also be good.  

“Work out 
24+36

6
 without calculating 24 + 36” 

Binary Arithmetic
e.g. 

Complex Algebra
e.g. 

Binary Arithmetic
e.g. 

Complex Arithmetic
e.g. 

Complex Algebra
e.g. 

Binary Algebra
e.g. 

Path 2

Path 1
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Sequence 2: Pre-algebra activities as a step from arithmetic to algebra 

The first uses of letters are as unknowns. When used as unknowns, computation is predominantly arithmetic. 

This is called the pre-algebra stage. It is useful to go through this stage as in the table below.  

Arithmetic  Pre-algebra  Algebra 

e.g. 2 + 3 = 5 

7 × 4 = 28 

 e.g. 𝑥 + 5 = 16 

3𝑥 + 7 = 25 

 e.g. 𝑥 + 3 = 2𝑥 + 1 

𝑥 + 3𝑦 + 4𝑥 − 2𝑦 = 15 

 

In developing the algebra stage of sequence 2, we need, according to sequence 1, to build understanding of 𝑥 +

2 and 3𝑥, and extend this to more complex examples. One way to do this is to use physical materials to model 

the algebraic expressions. Some materials and their uses are below.  

Physical materials 

Physical materials for algebra must have something for ordinary numbers and something that makes sense in 

terms of variable. In the use of the mass balance, we had a bag with a question mark on it into which we could 

put “any number” of weights. The following examples of physical materials have been used with success. (Note: 

There are also virtual forms of some of these materials available on the internet.) 

Variable Numbers Variable squared 

Envelope or box Counters  

Cups  Counters   

Fixed length  A shorter length  A square tile  

The way to use these materials is as follows. 

3𝑥 + 2  3 cups and 2 counters 

3(𝑥 + 2) 3 lots of 1 cup and 2 counters 

 

 

(2𝑥 + 1)(𝑥 + 3) = 2𝑥2 + 7𝑥 + 3  

(Use a distributive form of the materials as on right – see section 

5.4.2.)  

 

Thus, with materials, one can state a real-world situation, model it and 

give language and symbols. An activity to reinforce this is to get students 

to fill in the four columns of a table such as that below. 

Story Material Language Symbol 

I bought 4 pies and a $7 

cake 

 

4 unknowns and 7 

dollars 
4𝑝 + 7 dollars 

 

It is also important that this situation is reversed, that is, start with symbols, state language, model with materials 

and create a story. The creation of stories is powerful in teaching how to interpret stories.  
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Substitution and simplification 

Once we are familiar with equations with variables, we can use these independently of real-world situations and 

the possible quantities the variables may represent. Other than solving for unknowns, the two important 

mathematical ideas are substitution and simplification. These are based on extension of the associative, 

commutative and distributive arithmetic principles to algebra.  

1. Substitution. Substitution involves replacing the variable with a number and using arithmetic to work out 

the answer, for example: 

2𝑥 + 5 when 𝑥 = 7:    2𝑥 + 5 = 2 × 7 + 5 = 19 

3𝑥 + 𝑦 − 7 when 𝑥 = 5, 𝑦 = 9: 3𝑥 + 𝑦 − 7 = 3 × 5 + 9 − 7 = 17 

2. Simple simplification. Simple simplification involves using arithmetic understandings to calculate with 

variables – it is simply examples like 2𝑦 + 3𝑦 = 5𝑦 and 2 × 3𝑦 = 6𝑦 for linear expressions, it is not 

factorisation of quadratics. These skills are necessary for the balance rule to be applied. 

As will be shown in subsection 5.4 of the next chapter, an effective way to build understanding of the rules 

of variable or algebraic calculation is to build the calculation rules from patterns seen in arithmetic (see 

below). However, it is important not to think that letters stand for objects; rather, they stand for numbers 

of objects. For example, if we have a box of apples and we use the letter a, it stands not for apples but the 

number of apples in the box. Thus, patterns for letters must come from numbers. 

3 apples + 2 apples = 5 apples 

3 eights + 2 eights = 5 eights 

3 hundreds + 2 hundreds = 5 hundreds 

3 any number + 2 same number = 5 of any number 

3𝑥 + 2𝑥 = 5𝑥  

This method of finding the pattern from arithmetic can be repeated to show simplifications such as 3𝑥 +

2𝑦 + 4𝑥 = 7𝑥 + 2𝑦, 3𝑥 = 𝑥 + 𝑥 + 𝑥, 5 × 3 m = 15 m and even multiplication of 𝑥 by itself = 𝑥2, and 3𝑎 ×

4𝑏 = 12𝑎𝑏.  

4.5 Nonlinear equations, formula activities and modelling 

As discussed in other sections, linear is the major focus of equations up until Year 9. However, there are nonlinear 

forms that can be considered (e.g. quadratics, cubics, exponentials). This section will look at these from two 

perspectives: (a) the role of the balance rule; and (b) solutions to quadratics beyond the balance rule. 

4.5.1 The balance rule and nonlinear equations 

In algebra, linear equations involve variables. However, these variables are simply 𝑥 or 𝑦. They do not involve 

indices such as squares, cubes or exponentials, as can be seen below.  

Linear equations Nonlinear equations 

2𝑥 + 1 = 11 𝑥2 + 1 = 5 

𝑥

4
− 2 = 𝑥 2𝑥3 − 𝑥2 = 45 

𝑥 + 𝑦 = 8 𝑥2 − 3𝑥 = 2𝑥2 + 7𝑥 − 8 

3𝑥 + 2 = 4𝑥 − 7 2𝑥3 − 𝑥2 + 7 = 54 − 𝑥3 

2𝑥 + 3𝑦 − 4 = 2𝑥 − 𝑦 + 8 2𝑥 − 5 = 27 

However, some features are still the same for nonlinear equations:  

1. Nonlinear equations are still two expressions equivalent to each other, e.g. 𝑥² − 2𝑥 = 3𝑥 − 6. 
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2. Nonlinear expressions are still symbolic of describing things in real life, e.g. 𝑥³ is the volume of a cube. 6𝑥² 

is the surface area of the same cube, and 𝑥³ + 7𝑥² is the volume of a cube of side 𝑥 plus a square prism with 

an end length of 𝑥 and a height of 7. 

3. Equivalence for nonlinear equations is still “the same value as” and still follows the rules of reflexivity, 

symmetry and transivity.  

This means that the balance rule applies to nonlinear equations – whatever you do to one side, you should do to 

the other. There are, however, more possibilities in terms of what you can do. In linear equations we could add, 

subtract, multiply and divide. Now we can also do square root, cube, cube root, make exponentials and reverse 

the exponentials (logarithm) – see examples in right column of table on previous page.  

We only have to check that the change is “well-defined” and only gives one answer. This is mostly true but for 

square roots, there are two possibilities: positive and negative. For example, using the balance rule to solve 2𝑥² +

6 = 38 gives two answers, +4 and −4, as the following shows:  

 

Keeping the above in mind, the balance rule can solve nonlinear equations in cases where all the unknowns are on 

one side and simple (only having one variable with one coefficient). Two further examples are provided below. 

1. 𝑥³ + 3𝑥 + 2 = 29 + 3𝑥 can be solved by the balance rule alone: 

 

2. 𝑥2 + 3𝑥 + 2 = 29 + 2𝑥 cannot be solved by the balance rule alone: 

 

To be solved, this would need to be made equal to zero and the expression factorised or the rule for 

determining unknown for a quadratic used (see next subsection 4.5.2). 

Challenge: Get students to make up nonlinear examples that can be calculated by the balance rule alone and 

solve them. For example: 

(a) 𝑥3 + 2𝑦 − 4 = 𝑥3 + 𝑦 − 10 

(b) 3𝑥 + 𝑥2 − 2 = 𝑥2 + 15 

subtract 

subtract 
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4.5.2 Going beyond the balance rule for quadratics (challenge) 

One of the reasons the balance rule alone cannot solve quadratics is that the 𝑥² and the 𝑥 often mean that there 

are two types of 𝑥 that end up on one side of the equation, e.g. 2𝑥² − 3𝑥 = 7. However, the balance rule plus 

two other pieces of information can be combined to develop a way of solving quadratics. The two other pieces 

of information are: 

(a) quadratic expressions are multiples of two linear expressions, e.g. 2𝑥² − 3𝑥 = 𝑥(2𝑥 − 3) and 𝑥² −

5𝑥 − 6 = (𝑥 + 1)(𝑥 − 6); and 

(b) the product of two expressions can only equal zero if one of the expressions equals zero, e.g. 

(𝑥 + 1)(𝑥 − 6) = 0 means 𝑥 = −1 or 𝑥 = 6 

Putting all of this together, we can solve quadratics by using the following steps to factorise the quadratic: 

Step 1 Use the balance rule to make one side equal to 
zero. 

 

Step 2 Determine a way to make the left-hand side 
equal to a product of two linear expressions. 

 

Step 3 Work out the 𝑥’s that will make the two linear 
expressions equal to zero. 

(Two answers are 𝑥 =
1

2
 or 𝑥 = 4) 

 

Step 4 Check by substitution. 

 

A formula has been constructed to find the two answers, no matter what the quadratic: 

If 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 then  

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

Use either factorisation (as in the table above) or the quadratic formula to determine the expressions below: 

(a) 3𝑥2 + 4𝑥 − 7 = 2𝑥2 + 7𝑥 − 9 

(b) 2𝑥2 − 𝑥 + 6 = 6 − 2𝑥2 − 4𝑥 

(c) 3𝑥2 + 5𝑥 − 7 = 6 − 4𝑥 − 𝑥2 

Note: The algebra tiles (see section 4.1.4) can be used as a physical material to assist with the balance rule part 

of the above process. 

add 

add 4

subtract 

:  

correct

:  

correct
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4.5.3 Formulae activities 

This subsection looks at (a) formulae as a way of introducing the unknown and variables, and (b) algebra 

applications with formulae. 

Using formulae to introduce variable 

So far in this book, we have seen how the following can be used to define variable and to introduce algebraic 

expressions mostly in linear form, e.g. 2𝑛 + 3 or 
𝑛

2
− 4, but also in nonlinear form, e.g. 𝑛³ + 1: 

(a) using function machines and backtracking, and equivalence equations and the balance rule to introduce 

equation, equations with unknowns, pre-algebraic expressions and equations, and the notion of the 

unknown (i.e. 𝑛 or 𝑥 can be a symbol for an unknown number) as a precursor to variable; and 

(b) using patterns (finding the position rule) and function machines (finding change rules) to introduce the 

notion of variable (i.e. 𝑛 or 𝑥 stand for any number) and algebraic expressions.  

However, there is a third way to introduce unknown and variable, and algebraic expressions and equations: 

(c) using formulae from measurement, geometry, probability and statistics. 

For example, we can study rectangles drawn on square grid paper and see that a 4 by 3 rectangle has 12 square 

units. This enables us to see that the area of a rectangle is length × width. After meaning has been developed, 

the long written relationship is changed to a formula using letters, that is, A = L × W. In this way A, L and W are 

introduced as unknowns and variables.  

Interestingly, formulae are not restricted to linear forms. For example, area of a circle is 𝜋𝑟2, volume of a cube 

is 𝐿³, number of diagonals in an 𝑛-sided polygon is 
𝑛(𝑛−3)

2
, and number of different outcomes for throwing a dice 

is 2𝑛.  

Applications with formulae 

Obviously formulae are used to determine the answers to the relationship being studied. This means that 

formulae are used in substitution. For example, the volume of a cylinder is 𝜋𝑟2𝐻. A common activity therefore 

is to work out volumes for given radii and heights. For example, if a radius (𝑅) = 2 m and height (𝐻) = 4 m, then 

the volume of the cylinder is 𝜋 × 2² × 4 = 16𝜋 cubic metres or m³.  

However, the difficult problems in using formulae usually involve changing the subject of the formula. This 

requires using the balance rule. For example: 

1. The tradesperson has to build a cylindrical tank with a diameter of 4 m to hold 120 m³. How high does the 

tank have to be? 

Step 1 Write formula 𝑉 = 𝜋𝑅2𝐻 

Step 2 Substitute 120 = 𝜋 × 22𝐻 

Step 3 Change subject to H by using the balance rule 𝜋22𝐻 = 120 

divide by 𝜋22 

 

Step 4 Calculate answer 𝐻 =
120

4𝜋
 m 

 

It should be noted that this change of subject could be done without numbers; for example, change the 

subject of 𝑉 = 𝜋𝑅2𝐻 to 𝐻.  
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Step 1 Write formula 𝑉 = 𝜋𝑅2𝐻 

Step 2 Put H on the left-hand side of the equation 𝜋𝑅2𝐻 = 𝑉 

divide by 𝜋 

Step 3 Use the balance rule 𝑅2𝐻 =
𝑉

𝜋
 

divide by 𝑅2 

Step 4 Have a new formula 
𝐻 =

𝑉

𝜋𝑅2
 

 

2. The tradesperson has to build a cylindrical tank with a height of 5 m to hold 120 m³. What is the diameter? 

Step 1 Write formula 𝑉 = 𝜋𝑅2𝐻 

Step 2 Put R on the left-hand side of the equation 𝜋𝑅2𝐻 = 𝑉 

divide by 𝐻 

Step 3 Use the balance rule 𝜋𝑅2 =
𝑉

𝐻
 

divide by 𝜋  

𝑅2 =
𝑉

𝜋𝐻
 

square root 

𝑅 = √
𝑉

𝜋𝐻
 

Step 4 Calculate diameter (assuming only positive square 
roots) 𝐷 = 2√

𝑉

𝜋𝐻
 

4.5.4 Teaching formulae 

It is important that the writing of formulae follows these stages: 

1. Draw or construct examples from the context of the formula; for example, construct cubes from blocks and 

relate the length of the side to the number of blocks and from there to the volume of the cube. It will be 

seen that volume is 𝐿³. Answers should be calculated using the first principles. 

OR Develop a new context from an existing formula and relate this to a formula that is already known. For 

example, the area of a square is 𝐿². So we can construct a prism on a square base using blocks 1 unit high, 

then 2 units, then 3 and so on.  

2. Place examples in tables and look for relationship directly from examples (as in table below): 

Length of side 1 2 3 4 (and so on) L 

Number of cubes 1 8 27 64  L3 

 

OR Place examples in tables but relate to another formula (as in table below): 

No. of levels 1 2 3 4 (and so on) L 

Area of base L2 L2 L2 L2  L2 

Volume 1L2 2L2 3L2 4L2  LL2=L3 

 

3. Make an effort to state and use formulae in words, so that it is easier to become used to: 

Area = length multiplied by width = 4 m × 3 m = 12 m², where length = 4 m and width = 3 m. 
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4. When formulae are well-known and their use is familiar, replace words with letters (A = L × W) and as this is 

done, A, L and W will be understood as unknowns and as variable because we are able to put anything in for 

L and W and this will always give A. 

4.5.5 Modelling activities 

One of the crucial skills to develop in students is the ability to translate real-world situations into equations and 

back again. This is done by teaching the students what the equation means as a story (Activity A) followed by 

activities interpreting the story in terms of symbols (Activity B is reversing Activity A).  

Activity A 

Equation Story 

3𝑥 + 6 = 27   3𝑥 means 3 × any number; +6 means to add 6; = means same value as and 

27 is the balancing value 

 so we need 3 lots of the same thing plus 6 to balance the total 27 

 there can be many situations – what about maxi taxis? 

 “Three maxi taxi loads of children were brought to the game. 6 children 

were already there. This made 27 children.” 

 

Activity B 

Equation Story 

There are two times that are 
not given. They are the same. 
This is t + t or 2t. 
So, 2t + other time = 40 
Thus, 2t + 26 = 40 

“John waited for the lift, then spent 4 minutes travelling in the lift, then spent 

15 minutes at his appointment and then waited the same amount of time as the 

first wait for the lift again. Then it was another 7 minutes before he left the 

building. He spent 40 minutes in the building.”  

 

We can use the balance principle on these equations to work out the unknowns, for example: 

Activity A 

 

Activity B 

 

6

40

t

t

26

40 -26 
t

t

14

t

t 7

7

t = 7
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5 Arithmetic–Algebra Principles 

Arithmetic and algebra have the same structures in terms of principles (also called properties or laws). In arithmetic, 

these principles are often invisible because of an overdue emphasis on product (getting answers) instead of process 

(the properties of operations and how these are used to get answers). Process and product are the same in algebra 

(the process of adding a variable and a number, e.g. 𝑦 + 3, is also the answer to adding 𝑦 and 3). This means that 

the structure of mathematics is more visible and more important in algebra because it is not masked by 

computation. Product is often dependent on numbers (e.g. 3 + 5 = 8 because of what 3 and 5 are) but process is 

based on principles that hold for all numbers (e.g. 3 + 5 = 5 + 3 no matter what we change 3 and 5 to). As algebra is 

the generalisation of arithmetic, these principles (as generalisations) come to the forefront.  

The important principles that are the basis of arithmetic and that also apply to algebra are the equivalence and 

order principles and the operation or field principles (see 5.1 below). They are principles that apply to numbers, 

variables, expressions and functions. There is a third set of principles that have to do with the effect of number 

size, but these are covered in the YDM Operations book. As algebraic thinking is the most powerful form of 

mathematics thinking, it is important to develop these principles for arithmetic in the early years (to pre-empt 

later algebra use) and to then translate these across to algebra as unknown and variable are introduced. This 

leads to a sequence for teaching this chapter as shown below. 

 

The chapter begins with descriptions of the principles in section 5.1 and then moves on to very early arithmetic 

principle activities (section 5.2), early to middle arithmetic principle activities (section 5.3), and later arithmetic 

to algebra principle activities (section 5.4). 

5.1 Equivalence, order and operation structure 

5.1.1 Equivalence and order 

Arithmetic and algebraic expressions, whether they have one or many symbols, can be equal to each other 

(equivalence) or greater or less than each other (order). 

When arithmetic examples of equivalence or order (e.g. 2 + 3 = 5 or 4 + 3 > 6) are studied, generalisations can be 

found. As shown in section 4.2, this is best done in unnumbered situations initially. These lead to structures made 

up of generalisations which we call principles. 

Order principles (reflexive, symmetry, transitive)

Equivalence principles (reflexive, symmetry, transitive)

Early field principles
(identity/inverse, commutative, compensation, inverse relation)

Application to algebraic expressions 

Later field principles
(associative, distributive, equivalence)
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The equivalence principles are as follows: 

1. Reflexivity principle. Anything equals itself (e.g. 2 = 2). 

2. Symmetry principle. Equals can be turned around (e.g. if 2 + 3 = 5 then 5 = 2 + 3). 

3. Transitivity principle. Equals continues across equal relationships; the first in a sequence, equals the last 

(e.g. if 2 + 3 = 5 and 5 = 6 − 1 then 2 + 3 = 6 − 1). 

The order principles are as follows: 

1. Well-ordered principle. Two expressions have to be equal to, greater than or less than each other  

(e.g. 3, 5 → 3 < 5;  23 + 64, 72 − 15 → 23 + 64 > 72 − 15). 

2. Antisymmetry principle. If two expressions that are less than are turned around then they become greater 

than (e.g. 6 < 9 is the same as 9 > 6). 

3. Transitivity principle. Order continues across relationships; the first in sequence is greater than / less than 

the last (e.g. 6 − 1 < 8 + 2, 8 + 2 < 16 − 4, 16 − 4 < 48 ÷ 2 → 6 − 1 < 48 ÷ 2). 

The methods for teaching the principles relate (as in other sections) to the use of models to show equals and 

order. The two most used are mass (balance) and length (strips of paper/number lines). Section 5.2 contains 

instructional activities for teaching the equivalence and order principles. 

5.1.2 Field or operation structure 

The most important structure in school mathematics is the field. It is a structure composed of expressions and 

two operations, addition and multiplication. Subtraction and division are not strictly operations as they do not 

obey all operation principles. 

The field or operation principles are as follows. 

1. Identity principle. There are two identities that leave everything unchanged, namely, 0 for addition and 1 

for multiplication (e.g. 27 + 0 = 27 and 1 × ¾ = ¾).  

2. Inverse principle. If a change is to be made it can be undone by an inverse change, namely, −3 for +3 and ÷7 

for ×7. This means that − is the inverse of + and ÷ is the inverse of ×. 

3. Commutative principle. Operations with + and × can be “turned around” without error (e.g. 6 + 7 = 7 + 6 

and 23 × 4 = 4 × 23). However, this is not true for − and ÷ (e.g. 6 − 2 ≠ 2 − 6 and 12 ÷ 3 ≠ 3 ÷ 12). 

4. Associative principle. Operations with + and × which have more than two expressions can be completed 

with any association in any order (e.g. 6 + 3 + 5 = 9 + 5 or 6 + 8 or 11 + 3). 

5. Distributive principle. Addition means adding “like things” but multiplication means multiplying everything, 

that is, × distributes across + (e.g. 3 × (4 + 5) = (3 × 4) + (3 × 5); 23 × 2 = (20 × 2) + (3 × 2)). This means, for 

example, that 23 + 3 = 26 but 23 × 3 ≠ 29, and 23 × 3 = 69 but 23 + 3 ≠ 56. 

There are additional principles as follows that emerge from these (but are well worth remembering in their own 

right). 

1. Compensation principle. If there is a change in one number in + or ×, this is compensated by the inverse 

change in the other number. For example, 8 + 5 = 10 + 3 (8 + 2 = 10, 5 − 2 = 3); 12 × 3 = 4 × 9 (12 ÷ 3 = 4, 

3 × 3 = 9). Because of their inverse nature, − and ÷ also compensate but not by using inverses; they 

compensate by doing the same to both numbers. For example, 8 – 5 = 12 – 9 = 3 (8 + 4 = 12, 5 + 4 = 9); 

12 ÷ 3 = 24 ÷ 6 = 4 (12 × 2 = 24, 3 × 2 = 6). 

2. Inverse relation principle. For + and ×, any increase in a number, increases the total (e.g. 8 × 4 = 32, 

8 × 6 = 48). However, for − and ÷, increasing the second number decreases the total. For example, 8 − 3 = 5, 

8 − 6 = 2 (3 increases so 5 decreases); 12 ÷ 3 = 4, 12 ÷ 6 = 2 (3 increases so 4 decreases). 
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3. Equivalence principle. Since + 0 and × 1 do not change anything, then two things are equivalent if one is + 0 

or × 1 of the other (e.g. 2⁄3 × 1 = 2⁄3 × 2⁄2 = 4⁄6, so 2⁄3 is equivalent to 4⁄6 because 2⁄2 is the same as 1; 404 – 186 

= 404 – 186 + 0 = 404 + 14 – 186 − 14 = 418 − 200, so 404 − 186 can be solved by 418 − 200 because + 14 − 14 

is the same as + 0. 

Similar to before, these principles can be taught by the models that represent + and ×: the set and number line 

for + and the set, number line and array for ×. Section 5.2 below contains instructional activities for teaching the 

operation or field principles. 

5.2 Very early arithmetic principle activities 

Arithmetic principles reflect the structure of arithmetic and algebra. If they are learnt, then students have 

knowledge they can apply across all years of primary and secondary school mathematics – to whole numbers, 

fractions, variables, functions and calculus. 

There are two major structures that the principles can be clustered into: the equivalence and order structure, 

and the field or operation structure. It is difficult to state where in the school years the principles should be 

developed because they need to be reinforced every time a new context (new types of numbers, variables, 

functions, etc.) appears.  

The materials that are commonly used to teach these principles are those associated with the areas of equations 

and functions, namely, the balance and the length models, and those associated with the two operations of 

addition and multiplication, namely, the set, number line and array models. However, calculators and finding 

patterns are also excellent instructional activities for this area, and there are some active whole-body techniques 

that are very useful. It has also been found that activities in unnumbered situations (situations where there is no 

number) assist in seeing these structures. 

The early years are when the balance and length models are introduced. If unnumbered contexts like groceries 

and coloured strips of paper are used for these models, the equivalence and order principles can be introduced. 

5.2.1 Teaching the equivalence principles – unnumbered contexts 

The equivalence principles are reflexivity, symmetry, and transitivity. They can be taught with the balance (mass) 

and length (strips of paper) models. 

Balance or mass model 

Here, equals is represented with groceries on a balanced beam balance. The use of balances begins as a real 

balance in early activities and then abstracts to a mathematical-balance drawing in middle activities and finally 

to an image of a balance in later activities. The drawing and the image balance can allow any operation. 

The principles are easily shown physically with a balance. Have the students experience the principles with beam 

balances and groceries. Direct the students to state out loud the equation as you move your hand from their left-

hand side of the balance to their right-hand side – “equals” is said as the hand goes past the balance point (centre) 

of the balance (it can be useful to stick “=” on the centre of the balance). Direct the students to record the 

balanced groceries as informal equations, e.g. “salt equals soap plus pasta”. Discuss any generalities they find; 

encourage them to see the generalities below.  

1. Reflexivity. This is fairly obvious (that two things that are the same will be equal) 

but it needs to be made explicit with equations. Students can investigate if same 

things always balance. 
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2. Symmetry. This can be seen by turning the balance 180°. 

 

3. Transitivity. This requires the students comparing three things in three different ways to show that if A=B 

and B=C then A=C.  

 

Length model 

Here, equals and order are represented by same length and different length respectively. It begins by strips of 

paper, moves on to lines (the double number line) and finally to images in the mind. The equivalence principles 

are easily represented as in the three examples below. Again, effective strategies involve the students saying out 

loud the equalities, writing informal equations, and discussing generalities.  

1. Reflexivity 

A + B = A + B 

2. Symmetry 

 
 C = A + B  A + B = C 

3. Transitivity 

 
 P = Q and Q = R + S  P = R + S 

It is always best to start with the human body (e.g. hang plastic bags on arms and become a beam balance and 

walk different distances); and, as stated before, with unnumbered situations (e.g. compare groceries, use 

unmeasured strips of paper). 

5.2.2 Teaching the order principles – unnumbered contexts 

The order principles are well-ordered, antisymmetry and transitivity. As with the equivalence principles, they can 

be taught with the balance (mass) and length (strips of paper) models. For the balance, note that a heavier item 

pushes down more, so higher means lighter. Once again, effective strategies involve the students saying out loud 

the equalities or inequalities, writing informal equations, and discussing generalities. The following drawings 

show how both the balance or mass model with weights and the length model with paper strips can give students 

experiences with the order principles on which to base discussion.  

  

A B

A B
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1. Well-ordered. It is obvious that if you have two weights or two strips that they either have to be equal or 

one is larger (heavier or longer) than the other. However, this needs to be experienced and made explicit. 

 
 A = B    or A > B   or  A < B 

 
  P = Q  or  P > Q    or  P < Q 

2. Antisymmetry. As for equivalence and symmetry, this can be seen by turning the balance 180°. 

 

 
 X > Y Y < X 

3. Transitivity. Once again the students compare three things in three different ways to show that if A>B and 

B>C then A>C.  

 

 
 P > Q and Q > R  P > R 

5.3 Early to middle arithmetic principle activities 

The middle years are when the equivalence and order principles are reinforced in numbered situations and when 

the field/operation principles are introduced. The equivalence and order principles rely on balance and length 

models, while the field/operation principles are taught by the models that represent addition and multiplication: 

the set and number line for addition and the set, number line and array for multiplication.  

5.3.1 Introducing the equivalence and order principles for numbered situations 

In the middle years, the equivalence and order principles (from 5.2.1 and 5.2.2 above) are applied to numbers 

using balance beams with numbers of weights (e.g. coathanger balances with red, blue and green baked bean 

cans) and lines of blocks. Further work to reinforce these concepts should be undertaken with drawings of 

mathematical balances and vertical double number lines in the latter half of the middle years.  

P

Q

P

Q Q

P
or or

A

B

“Turn the balance around”
A > B B < A

A

B
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We will not attempt to show how to teach each principle in detail but provide diagrams of how activities with 

balances and number lines can be experienced and recorded as a basis for discussion and recognition of 

generalisations. We will not include reflexivity as it is obvious and transitivity will cover both equivalence and 

order.  

1. Symmetry. This is 

important as it shows 

that an equation can 

be reversed, e.g. 

3+4=7 and 7=3+4 are 

the same. 

 

2. Antisymmetry. This extends symmetry in equivalence to order showing that when inequations are reversed 

the order changes from greater than to less than and vice versa. 

3. Well-ordered. This is making explicit the principle that two expressions are either equal or in order (greater 

than or less than).  

 

4. Transitivity. This is showing that if one thing is equal to/less than/greater than a second thing and this second 

thing is equal to/less than/greater than a third, then the first is equal to/less than/greater than the third. 

 

 P = Q and Q = R + S  P = R + S 

5.3.2 Introducing the field/operation principles 

The field/operation principles comprise identity, inverse, commutativity, associativity, distributivity, 

compensation, inverse relation, and equivalence. There are two ways to teach the principles. The first is to use 

the set, array and number-line models to show the relationships. The second is simply to use a calculator to check 

many possibilities. 

As for the equivalence and order principles, effective strategies for teaching the field/operation principles involve 

the students (a) experiencing activity with models, (b) saying out the relationships experienced on the way to 

the principles, (c) writing informally what these relationships are, and (d) discussing generalities. As well, any 

arithmetic experiences should be used to highlight the principles as they appear. The models used are the set, 

number line and array. 

There is not the space to show in detail how to teach each principle, so the following examples will show how 

models may be used to teach them. In some cases, interesting and effective methods will be highlighted.  
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1. Identity. The aim is to show that adding 0 and multiplying by 1 do not change anything. For addition, the 

best idea is to add 2, then add 1 and finally add 0. For multiplication, we have 1 group, row or jump of the 

number or a number of groups, rows and jumps of 1 (both of which equal the number). 

 

 
 1 group of 6 (1 × 6 = 6) 4 jumps of 1 (4 × 1 = 4) 1 row of 5 (1 × 5 = 5) 

2. Inverse. The aim is to show that addition and subtraction, and multiplication and division, are inverses. Act 

out situations like Share 12 amongst 3, what do we get? [4]. Make 3 groups of 4, what do we get? [12]. Join 

and separate, rejoin and reseparate; make groups and share out groups, remake and reshare. Highlight that 

one action is the opposite and undoes the other (e.g. 7+2=9 and 9−2=7). 

 
 + 6 − 6 1 row of 4 × 3 makes 12; 12 shared by 3 makes 4 each 

3. Commutativity (“turnarounds”). Show that order does not matter for addition and multiplication. This is achieved 

by showing that two numbers added gives the same regardless of the order, and (highly recommended) turning 

an array by 90 degrees to show, for example, that 3 rows of 4 is the same as 4 rows of 3.  

 

 

4. Associativity. The aim is to show that order does not matter for three numbers for the same operation of 

addition or multiplication. This is straightforward for addition (joining 3 sets so which sets join first is 

irrelevant – see below), but not so easy for multiplication because you need, for example, (3 groups of 4) 

groups of 5 objects to equal 3 groups of (4 groups of 5). This is more easily seen with calculation (and a 

calculator) than from the models. 

 

5. Distributivity. This is best done by dividing arrays, or the more abstract rectangles, into two parts. 

 

  

6 2

6 + 2 = 8

6 1

6 + 1= 7

6

6 + 0 = 6

Nothing

Rotate 
90

3 x 5 5 x 3

 23   20 3 

4 4 × 23  4 4 × 20 4 × 3 
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6. Compensation. This is where we show that any two numbers have the same addition or multiplication if a 

change in one number is undone in the other number by use of inverse. It is difficult to show with models. 

In fact, it is sometimes more easily seen by discussion, e.g. Look at 2+3=5, what happens if 2 goes to 4, what 

if we want the sum to remain as 5? However, models can be used as below.  

 

Compensation is one area where using kinaesthetic or whole-body activity is useful. Students have difficulty 

looking at materials and pictures and seeing that, if increasing the 8 in 8 + 5 = 13, it is necessary to decrease 

the 5 to keep 13 as the answer. However, one effective way to 

overcome this difficulty is to consider addition as a relay race in 

which one member does more than their share, and to act this 

out. Get students to form into pairs, mark out a relay walk (as on 

right) and a baton change and direct the pairs to walk the relay. 

Discuss what would happen if the first person walked further (as 

on right) – what happens to the second person? Students can see 

that the second person has to walk less by the amount the first 

person walked more.  

This method of teaching appears to make it easier for students to 

understand the compensation principle.  

It should also be noted that although the field/operation principles apply to addition and multiplication, there 

is also compensation for subtraction and division. However, it can be confusing for students because 

compensation for addition or multiplication is the inverse of the first change, while compensation for 

subtraction or division is the same as the first change. For example, 8 + 5 = 10 + 3 because, for addition, 8 

increased by 2 means that 5 needs to decrease by 2; but 8 – 5 = 10 − 7 because, for subtraction, 8 increased by 

2 means 5 also needs to increase by 2. Similarly, 12 × 4 = 6 × 8 because, for multiplication, 12 divided by 2 

means that 4 needs to be multiplied by 2; but 12 ÷ 4 = 6 ÷ 2 because, for division, 12 divided by 2 means that 4 

also needs to be divided by 2 to maintain equivalence.  

To avoid confusion either teach compensation for addition and multiplication, and subtraction and division 

separately, or place compensation under the inverse principle. Since addition and subtraction, and 

multiplication and division, are inverses, then it is reasonable that they would do the opposite with regard 

to the compensation principle. Since addition and multiplication compensation require the opposite change, 

it is reasonable that subtraction and division compensation require the opposite of opposite which is the 

same change.  

7. Inverse relation. Subtracting more and 

dividing by more both have the effect of 

decreasing the answers to the 

computations, as can be seen in the 

examples on right and below. 

 

12 ÷ 3 12 ÷ 6

The more that is taken away, the less that is left 

More shares, less each share 
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8. Equivalence. This principle says that as long as we add 0 or multiply by 1, the answer stays the same (the 

expressions are equal). This needs to be experienced and for students to become flexible with what 0 and 1 

could be. For example, for 28 + 15, 0 = + 2 − 2, which means that 28 + 15 = 28 + 15 + 2 – 2 = 30 + 23, while 

for 2⁄5, 1 = 2⁄2, which means that 2⁄5 = 2⁄5 × 1 = 2⁄5 × 2⁄2 = 4⁄10. 

5.3.3 Reinforcing the equivalence and order principles with more abstract representations 

At the end of the middle years, the equivalence and order principles can be further reinforced with mathematical 

balances (drawings with expressions on each side) and vertical double number lines (with operations drawn as 

arrow movements on left and right of the vertical line). We provide a few illustrations of the kind of activities 

students can experience. 

1. Symmetry 

 
 2 × 3 + 5 = 20 – 9 20 – 9 = 2 × 3 + 5 

2. Antisymmetry 

 
 2 × 3 + 5 < 20 – 3 20 – 3 > 2 × 3 + 5 

3. Well-ordered 
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4. Transitivity 

 

5.4 Later arithmetic to algebra principle activities 

In the later years, the principles need to be reinforced for number and then applied to variables. This should be 

viewed as an extension of arithmetic. The principles are then extended to various algebraic skills (e.g. expansion, 

simplification and numerical factorisation). Some of these extensions have already been given in Chapters 2, 3 

and 4.  

There are important features of arithmetic and algebra that must be considered when looking at the concepts 

and skills of expansion, simplification and factorisation: 

(a) they hold for division and subtraction as well as multiplication and addition;  

(b) subtraction is the inverse of addition but this does not affect activities based on distribution as the 

crucial component is multiplication (and division); and  

(c) division is the inverse of multiplication and so the effect is that expansion for division is similar to 

factorisation for multiplication. For example, 3 + 9𝑎 = 3(1 + 3𝑎) is factorisation which is similar to 

expansion for division (3 + 9𝑎) ÷ 3; in both we have to find the common factor.  

Thus, this section will focus on multiplication and addition and rely on inverses to give insight into what happens 

for division. That is, if something works for multiplication and addition, it also works for adding a negative 

(subtraction as inverse of addition) and multiplying by reciprocal (division as inverse of multiplication).  

5.4.1 Reinforcing and extending the principles from arithmetic to algebra 

This subsection looks at how the arithmetic principles can be extended to algebra, by looking at patterns in 

arithmetic. Much of this subsection will be based on the distributive principle. This will be shown with the area 

model for multiplication across addition. The ideas also hold for division and subtraction. Subtraction situations 

can be undertaken similar to addition. However, division is more difficult and can be approached in two ways:  

1. Division is actually the inverse of multiplication. Expansion with division may need factorisation before the 

division can be completed. For example, 
6𝑥+9𝑦

3
 cannot be immediately factorised. The numerator must first 

be factorised as follows: 6𝑥 + 9𝑦 factorises to 3(2𝑥 + 3𝑦). Then the division can be completed so that 
6𝑥+9𝑦

3
=

3(2𝑥+3𝑦)

3
= 2𝑥 + 3𝑦. Division examples should be explored after students are comfortable with 

multiplication and addition/subtraction.  

2. Division can also be taught as multiplication by reciprocal. In this way the multiplication ideas can be 

extended simply to cover division. For example, 
6𝑥+9𝑦

3
=

1

3
(6𝑥 + 9𝑦) =

1

3
× 6𝑥 +

1

3
× 9𝑦 = 2𝑥 + 3𝑦.  
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Reinforcing principles in arithmetic 

An effective way to reinforce the principles for numbers is to give students calculators and encourage them to 

explore principles (e.g. Is the first number plus the second always equal to the second plus the first? Is a number 

multiplied by 1 always equal to itself?). There are two steps to this process as the examples below for the 

distributive principle and the symmetry principle show. (Note: A more structured way to do this is given for the 

distributive law in subsection 5.4.2). 

1. Provide students with examples to check with the calculator. For the distributive principle, this would mean 

activities like below.  

Are these the same?   11 × 13 + 11 × 24 = ________; 11 × (13 + 24) = ___________ 

Check with a calculator.  23 × 27 + 23 × 56 = ________; 23 × (27 + 56) = ___________ 

      34 × 78 – 34 × 23 = ________; 34 × (78 − 23) = ___________ 

     and so on 

For the symmetry principle, students could be given examples to check as below. Examples should involve 

all operations. 

Are these both correct/true? Yes/No 245 × 23 < 67 231 _______; 67 231 > 245 × 23 _______  

Use your calculator.   and so on 

2. Give students examples to solve that require using the principle being checked. For the distributive 

principle, this would mean activities like below. Students should be allowed to check by adding or 

subtracting the numbers in the brackets. 

Calculate these without adding or   54 × (76 + 28) = ___________ 

subtracting the numbers in the brackets .  186 × (259 + 543) = ___________ 

You can use a calculator.     74 × (168 − 89) = ___________ 

        and so on 

For the symmetry principle, students could be given examples as below. Once again, the calculator should 

be used to check.  

Use your calculator to determine the order in the first  49 × 53 ____ 2733;   2733 ____ 49 × 53 

activity of each set. Do the second without calculator. 54 × 58 ____ 29 × 109;   29 × 109 ____ 54 × 58 

        and so on 

For Step 2 in other field principles, students could be asked to calculate as follows: 

(a) Commutative – calculate 345 + 672 another way, that is, without entering [345], [+] and [672] on their 

calculator in that order [answer – reverse the order]. 

(b) Associative – calculate 158 + 436 + 277 another way, that is without entering [158], [+], [436], [+] and 

[277] in that order [answer – add the last two numbers first]. 

Extending principles to algebra 

An effective way to show that the principles apply to algebra is to build the principles from arithmetic as follows 

for two examples, identity and distributive. The method starts by looking at arithmetic examples, replaces the 

numbers with “any number”, and finishes with a letter representing a variable. (Note: A more structured way to 

do this is given for the distributive law in subsection 5.4.2). 

1. Identity  

7 + 0 = 7      8 × 1 = 8 

23 + 0 = 23     47 × 1 = 47 and so on 

any number + 0 = any number   any number × 1 = any number 

𝑥 + 0 = 𝑥         𝑦 × 1 = 𝑦 
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2. Distributive 

3 tens + 4 tens = 7 tens (3 + 4 = 7)  3 twos and 3 fives = 3 sevens (two + five = seven) 

3 eights + 4 eights = 7 eights ...  3 elevens + 3 nines = 3 twenties (eleven + nine = twenty) ... 

3 any no. + 4 same no. = 7 same no. 3 any no. + 3 some other no. = 3 (same any no. + same other no.) 

3𝑥 + 4𝑥 = 7𝑥    3𝑥 + 3𝑦 = 3(𝑥 + 𝑦) 

Continuing in the same manner can show that:  

4𝑥 + 4𝑦 = 4(𝑥 + 𝑦)  

12𝑥 + 12𝑦 = 12(𝑥 + 𝑦)  ... 

thus, 𝑝𝑥 + 𝑝𝑦 = 𝑝(𝑥 + 𝑦) for any number 𝑝 

Note: This also holds:   3 lots of 4 eights = 12 eights (12 = 3 × 4) 

the associative principle  8 lots of 6 twelves = 48 twelves 

for multiplication   4 lots of 5 anythings = 20 anythings, ... 

     𝑝 lots of 𝑞 anythings = (𝑝 × 𝑞) anythings 

     𝑝 × (𝑞𝑥) = (𝑝 × 𝑞)𝑥 

5.4.2 Extending the principles to cover expansion 

This subsection looks at expansion, which is based on the distributive principle. The 

distributive principle is that multiplication (and division) acts across all components of 

addition (and subtraction); that is, 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) and 
𝑝−𝑞

𝑟
=

𝑝

𝑟
−

𝑞

𝑟
. 

This can be seen in the difference between 43 + 2 and 43 × 2 (as on right).  

The distributive principle is best seen on the area model of multiplication. The area model is an extension of the 

array model (see below).  

Arrays 7 × 4 Area 7 × 4 

 

 

7 rows of 4 

 

 

5 × 4 

+ 

2 × 4 
 

 

7 rows of 4 

 

Area model 

 

 

7 × 2 + 7 × 2 

 

  

Two versions of the distributive principle Two versions of the distributive principle 

 

The steps to build expansion are as follows. 

1. Return to arithmetic and look at an example of expansion: 

Basic facts  

7 × 8 

 

 

 

 

5 × 8 + 2 × 8 = 56 

7 × 4 7

4

7 × 2 7

2

7 × 2 

2

5 × 4 5

4

2 × 4 2

7
5

2
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Algorithms 2 digit × 1 digit 

3 × 24 
 

 

 

     3 × 20  A 

+ 3 × 4    B 

 

Algorithms 2 digit × 2 digit 

56 × 73 

 

 

 

 
    50 × 70  A 

+ 50 ×  3   B 

+   6 × 70  C 

+   6 ×   3   D 

 

2. Relate this to algebra – use the area model (also tiles):  

6𝑝 = 6 × 𝑝 

 

 

 

 

4 × 𝑝 + 2 × 𝑝 = 4𝑝 + 2𝑝  

      

𝑎 × 𝑎 + 2  

 

 

 

 

𝑎 × 𝑎 + 𝑎 × 2 = 𝑎2 + 2𝑎  

      

(𝑎 + 𝑏) × 𝑐  

 

 

 

 

(𝑎 + 𝑏) × 𝑐 = 𝑎𝑐 + 𝑏𝑐  

      

(𝑎 + 𝑏) × (𝑐 + 𝑑) 

 

 

 

 

𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑  

      

(𝑥 + 2)(2𝑥 + 3) = 

(𝑥 + 2) × (2𝑥 + 3) 

 

 

 

 

2𝑥2 + 3𝑥 + 4𝑥 + 6  

= 2𝑥2 + 7𝑥 + 6  

 

3. To reinforce the above show the expansion in vertical format and relate to algorithm (see next page).  

  

56
A50

6

3

C

B

D

6
4

2
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24 

×  3 

  a+b 

×     a 

 

12 

60 

3×4 

3×20 

   ab 

    a2 

a×b 

a×a 

72   a2+ab  

     

24 

× 37 

  𝑥 + 2  

× 2𝑥 + 3 

 

28 

140 

120 

600 

7×4 

7×20 

30×4 

30×20 

 6 

3𝑥  

4𝑥  

2𝑥2  

3×2 

3 × 𝑥  

2𝑥 × 2  

2𝑥 × 𝑥  

888   2𝑥2 + 7𝑥 + 6  

This shows that algebraic expansion is an extension of the expansion used in the traditional algorithm, which 

is also based on the distributive principle.  

4. This can also be done for negatives, if we allow, for instance, 2 tens and 8 ones to be 3 tens and −2 ones: 

    2 8     3 −2     a+2    3b−4 

   ×  7      ×  7     ×  7      ×  7 

 1 4 0   (7×20)   2 1 0    (7×30)      7a    (7×a)     21b     (7×3b) 

    5 6   (7×8)    −1 4    (7×−2)      14    (7×2)     −28     (7×−4) 

 1 9 6    1 9 6   7a+14   21b−28 

It can also work for examples like 3 7 × 2 9; it can be done as 4 −3 × 3 −1. This extends to (a−2) × (2a−3): 

37 

× 29 

 

= 

4 −3 

× 3 −1 

  a −2 

× 2a −3 

 

600 

270 

 1200 

− 40 

40×30 

40×−1 

 2a2 

−3a 

a×2a 

a×−3 

140  − 90 −3×30  −4a −2×2a 

63  3 −3×−1  6 −2×−3 

1073  1073   2𝑎2 − 7𝑎 + 6   

Note: The negative can also be shown with graph paper and the area model. 

5.4.3 Extending the principles to cover simplification 

Expansion makes things longer. For example, 5𝑥 = 2𝑥 + 3𝑥 because 5 = 2 + 3 and (2 + 3)𝑥 = 2𝑥 + 3𝑥 by 

distribution, and (𝑥 + 1)(𝑥 + 2) = 𝑥2 + 3𝑥 + 2 because it is 𝑥(𝑥 + 2) + 1(𝑥 + 2). Simplification is the reverse of 

this, it makes things simpler. It is based on associative distribution principles as shown in the examples below. 

Example 1:  𝟐𝒙 + 𝟑𝒙 = 𝟓𝒙  

This is the reverse of 5𝑥 = (2 + 3)𝑥 = 2𝑥 + 3𝑥 and this can be used to introduce it. However, there are other 

ways such as patterns from arithmetic as used in subsection 5.4.1. Two others are as follows: 

1. Use reality. Think up a story for this. For example, All boxes have the same number of lollies, 𝑥. I bought 2 

boxes of 𝑥 lollies and then 3 boxes of 𝑥 lollies. How many lollies did I buy altogether? Obviously it is five 

boxes worth of lollies which is 5𝑥. 

2. Use materials. Think of a cup as variable (can hold an unknown number of counters) and counters as 

numbers. Then, 
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Example 2:  𝟐 × 𝟑𝒙 = 𝟔𝒙 

This has been covered in subsection 5.4.1. However, the two other ways above still hold. For example, 

1. Use reality. A story for 2 × 3𝑥 = 6𝑥 is I bought 2 lots of 3 boxes of lollies, how many lollies did I buy 

altogether? Obviously there are 6 boxes of lollies equivalent to 6𝑥. 

2. Use materials. 2 × 3𝑥 = 6𝑥 is represented by cups as on 

right. 

Example 3:  𝟐𝒙 + 𝟑𝒚 + 𝟒𝒙 + 𝟓𝒚 

In this one we return to the meaning of addition which is to add like things. This can be seen as follows. 

1. Use reality. A story for the above is I bought 2 bottles of drink for $𝑥 each and 3 pies for $𝑦 each, then I 

bought 4 more bottles of drink for $𝑥 each and 5 more pies for $𝑦 each. How much did I pay? Obviously this 

will be 2+4 $𝑥 and 3+5 $𝑦, thus 2𝑥 + 3𝑦 + 4𝑥 + 5𝑦 = 2𝑥 + 4𝑥 + 3𝑦 + 5𝑦 = 6𝑥 + 8𝑦. 

2. Use materials. We need two different cups to represent 𝑥 and 𝑦, then 2𝑥 + 3𝑦 + 4𝑥 + 5𝑦 is  

 

3. Use algorithm setting out. Compare to 23 + 45 and extend the vertical algorithm.  

23 

+45 

  2𝑥 + 3𝑦  

+4𝑥 + 5𝑦 

 

8 

60 

add ones 

add tens 

       6𝑥  

8𝑦  

add 𝑥’s 

add 𝑦’s 

68   6𝑥 + 8𝑦   

Note: The use of cups and counters can help with early algebra. For instance, many students confuse 3𝑥 + 2 with 

3(𝑥 + 2) but with cups and counters, as below, it is easy to see the difference: 

The cups and counters for 3(𝑥 + 2) are 

This compares with 3𝑥 + 2 which is  

5.4.4 Extending the principles to cover factorisation 

Factorisation is the reverse of expansion. Up to Year 9 it is only necessary to factorise for numbers, for example, 

2 + 4𝑥 = 2(1 + 2𝑥). However, the inverse understanding is a powerful way to view all factorisations. Thus, 

there are two ways to teach factorisation. 

1. Indirectly. Use examples like those below to become familiar with expansions and various multiplications 

and think about their inverse (only need examples ** for up to Year 9):  

Expansion Inverse 

2(𝑎 + 𝑏) = 2𝑎 + 2𝑏 ** 2𝑎 + 2𝑏 = 2(𝑎 + 𝑏) ** 

3(3𝑎 + 5𝑏) = 𝑎 + 15𝑏 ** 9𝑎 + 15𝑏 = 3(3𝑎 + 5𝑏) ** 

5(2𝑥 + 3) = 10𝑥 + 15 ** 10𝑥 + 15 = 5(2𝑥 + 3) ** 

𝑎(𝑎 + 𝑏) = 𝑎2 + 𝑎𝑏  𝑎2 + 𝑎𝑏 = 𝑎(𝑎 + 𝑏)  

𝑎(2𝑎 + 3𝑏) = 2𝑎2 + 3𝑎𝑏  2𝑎2 + 3𝑎𝑏 = 𝑎(2𝑎 + 3𝑏)  

𝑝(𝑥 + 𝑦) = 𝑝𝑥 + 𝑝𝑦  𝑝𝑥 + 𝑝𝑦 = 𝑝(𝑥 + 𝑦)  

In this way, students become familiar with factorisation as an inverse of expansion. 
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The first step is to identify what is common in these inverse examples – they have something in each part 

that is a factor (e.g. 𝑎 in 𝑎2 + 𝑎𝑏, 3 in 9𝑎 + 15𝑏, and so on). Then reinforce this by setting up exercises to 

determine if there is a factor, for example:  

Tick the ones that 

have a factor. 

Write the factor. 

Expansion Yes/No Factor 

3𝑎 + 4   

6𝑎 + 2   

3𝑎 + 𝑎𝑏   

The second step is to realise that the factor can be taken out of all parts (check by expanding), for example: 

3𝑥 + 6 → 3 is a factor → 3𝑥 + 6 = 3(𝑥 + 2) because 3𝑥 = 3 × 𝑥 and 6 = 3 × 2. 

2. Materials. Use cups and counters as follows (only useful for numerical factorisations).  

 

Factorisation is not the difficult or important task it used to be. For example, there are formulae for solving 

quadratics and there are calculators and apps that can solve equations for you by just entering them. In fact, like 

algorithms, solving equations can be done with technology. This means the important algebraic skills to develop 

in students is how to model problems and how to know what equations they have to solve. 

 

2)
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6 Teaching Framework for Algebra 

The teaching framework organises the content for algebra into a framework of four topics: repeating and growing 

patterns, change and functions, equivalence and equations, and arithmetic–algebra principles. Each of these 

topics is partitioned into sub-topics. Each sub-topic is described and any concepts or strategies used in the 

teaching framework are listed. They are also related to big ideas. Topics and sub-topics are chosen so as to 

represent ideas that recur across all year levels. The resulting framework is given in Table 1. This overall 

framework can be compared to the Australian Curriculum to produce year-level frameworks. 

Table 1. Framework for teaching algebra 

TOPIC SUB-TOPIC DESCRIPTION AND CONCEPTS/STRATEGIES/WAYS BIG IDEAS 

Repeating and 
growing 
patterns 

Repeating patterns 

Following/copying patterns; continuing patterns; 
completing patterns; constructing patterns; identifying 
repeats 

 

Relating position to item; finding rule for this 
relationship; numbers  language  variable 

Relating position and item for 
repeating pattern 

Generalising repeat; extending to equivalent fractions 
and proportion 

 

Linear growing 
patterns 

Copying, continuing, completing and creating patterns, 
objects  numbers; visual analysis  table analysis 

 

Relating position to term (visual  table); finding pattern 
rule (sequential and position – numbers  language  
variables); one, two or more operations (+/−  ×/÷) 

Relating growing part and 
constant part to pattern rule 

Generalising sequencing and pattern rules; relating 
pattern rule, pattern and graph; introducing variable and 
algebraic expressions 

Relating pattern, pattern rule to 
slope, 𝑦-intercept and graph 

Patterns in other 
strands 

Using patterns to find number and operation ideas and 
relationships 

 

Nonlinear growing 
patterns 

Copying, completing, continuing, finding and graphing 
pattern rule; exploring differences to rule and graph 

Relating differences to pattern 
rule and graphs 

Change and 
functions 

Meanings and 
notation 

Change; function machine; input–output tables; 
unnumbered  numbered; relating stories to change 

Symbols tell stories 

Arrowmath notation; arithmetic excursions; relation to 
equations 

 

Generalisation of change rules (numbers  language  
variables) 

 

Backtracking Inverse; backtracking; one, two and more changes; one 
or more operations (+/−  ×/÷) 

Backtracking 

Solutions Consider actions of unknowns; using backtracking to 
solve equations 

 

Graphing Graphing change; relating graphs, equations, arrowmath 
notation, input–output and real-world stories 

 

Equivalence 
and equations 

Exploring meanings 
of equals and order 
principles 

Same–different/equals–unequals; mass and length 
models; unnumbered to numbered contexts 

Equals and order principles (see 
arithmetic–algebra principles) 

Relation of real-world stories to equivalence and 
equations 

 

Mass and length contexts  “mathematised” contexts  
abstract contexts 

 

Balance rule Exploring matching changes to keep sides as the same 
value; unnumbered  materials  generalised  

Balance rule 

Unknowns/variable Representing unknowns and unknowns/variables in 
equations and inequations 

 

Solutions Solving for unknowns in equations and inequations Balance rule and inverse 
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TOPIC SUB-TOPIC DESCRIPTION AND CONCEPTS/STRATEGIES/WAYS BIG IDEAS 

Arithmetic–
Algebra 
principles 

Equals Exploring equivalence class and laws of equals Reflexivity, symmetry, 
transitivity 

Order Exploring greater than and less than in terms of order 
class and laws 

Non-reflexivity, antisymmetry, 
transitivity, well ordered  

Number size How numbers change in operations in relation to other 
numbers 

Compensation, inverse relation, 
equivalence 

Field Exploring the principles of both arithmetic and algebra – 
called the Field principles (or properties) 

Identity, inverse, commutative, 
associative, distributive 

Manipulation of 
alegebraic 
expressions 

Substitution, simplification, operations with algebraic 
expressions, and factorisation. 

Area model, distributive law 
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Appendices 

Appendix A: Mathematics as Story Telling (MAST) 

This approach to teaching mathematics uses the “creating own symbols” part of abstraction to teach students 

the role of symbols in mathematics, that symbols are a language that tells stories. (Note: This was part of the 

Algebra project at Dunwich State School led by Chris Matthews.) There are seven steps. 

1. Symbols. Students explore how symbols can be assembled to tell a story, first in Indigenous situations (e.g. 

Indigenous art) and then creating and interpreting symbols for simple actions (e.g. walking and sitting at a 

desk). 

2. Exploring simple addition. Students act out a story (e.g. 2 students join 3 students to make 5 people). 

Discussion identifies story elements – objects (the 2, 3 and 5 people) and actions (joining, making).  

3. Creating own symbols. Students create their own symbols to tell the story. They first do this free style (a 

drawing that represents the “joining” and the “making”) and discuss results (e.g. are they linear – showing 

the action left to right, or are they more holistic?). Secondly, the 

students create symbols in a more structured and linear setup 

(students use objects for students and drawing for “join” and 

“make” or “same as”), as in the example on right.  

Here the “join” picture is a vortex that picks up the 2+3 and the “making” picture is a cloud that brings them 

down together as rain.  

4. Symbol showing. Students share symbols and explain their symbols’ meanings. Students then use other 

students’ symbol systems to represent other stories (e.g. 4 people join 7 people), and make up stories where 

other students’ symbols are used to represent addition. 

5. Story modification. Teacher removes one counter from the left-hand 

side two counters and asks if story still true (see example on right). Most 

students will say no. Teacher then asks how it can be made true again. 

The normal answers are: 

(a) put the counter back (as on right); 

 

(b) remove a counter from right-hand side (the balance principle for 

equations) (as on right);  

 

(c) add a counter to the three counters as on right (the compensation 

principle); or 

 

(d) draw another vortex on the left-hand side and put a counter 

in front of it. 

6. Unknown. Teacher sets up story: “unknown number of people 

joined 3 to make 5”. Students create their own symbol for unknown 

as on right. Students use balance principle to find unknown. 

7. Formal symbols. Teacher introduces students to common formal symbols for join (+), results (=) and 

unknown (𝑥) e.g. 2 + 3 = 5 and 𝑥 + 3 = 5. Students begin to relate these symbols to everyday situations 

and to solve for the unknown. 
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Through these MAST activities, symbols are introduced as a shorthand language for telling stories, improving 

students’ ability to solve word problems. As well as this, the big ideas of balance and compensation are also 

introduced.  

Appendix B: The power of algebraic big ideas 

In this appendix we will show how teaching a powerful algebraic big idea (in this case a principle) can enable a 

lot of particular mathematics ideas to be achieved across many years of schooling. The example is the inverse 

principle, one of the most powerful principles or big ideas in mathematics, algebra and arithmetic.  

Models for teaching the inverse principle 

The inverse principle is the understanding that each operation has a partner operation that reverses or returns 

it to where it started. For example +2 is reversed by −2 and ÷6 is reversed by ×6. This is true for any number, 

measure or expression, therefore the operations themselves can be seen as inverses, that is + is the inverse of − 

and × is the inverse of ÷. Inverse, along with identity (the number that does not change anything, e.g. +0 and ×1) 

is one of the most important principles. It can be introduced by many methods; three are provided below.  

Undoing 

In this method, the teacher begins by talking about actions and how they can be undone so you return to where 

you started. For example, turning to the right can be undone by turning to the left, and stepping forward can be 

undone by stepping back. The second step is for the teacher to act out a series of undoings: for example, step to 

right  step to left, move hands clockwise  move hands anti-clockwise, and so on. This notion of undoing can 

be used to introduce a lot of important inverses. (Note: the answers are in square brackets like this [ ].) 

Take five counters and join four counters 

to them, to make nine. Discuss how we 

can undo this. [Take the four counters 

away and return to five.] This can be 

understood as +4 being undone by −4. Further examples will enable students to see that + is undone by −. 

For two-step problems look at, for example, how 

putting on a sock and a shoe is undone:  

Putting on requires putting the sock on (Step 

1), and then putting the shoes on (Step 2).  

Undoing requires taking the shoe off 

(undoing Step 2), and then taking the sock 

off (undoing Step 1), returning to a bare foot.  

We can see that each action is undone but also that both actions are undone in the opposite order (i.e. socks on, 

shoes on is undone by shoes off, socks off). Experiencing further examples leads to seeing that, for example, +3 

+2 is undone by −2 −3.  

  



© QUT YuMi Deadly Centre 2014 VERSION 3, 20/09/16 Algebra     Page 99 

Function machines 

In this method, the teacher builds a function machine “robot” from a large box, hangs an operation around its 

neck, and develops sets of cards (e.g. input cards 1 to 20, output cards 1 to 30). A student hides inside the box, 

other students put in different number input cards and the hidden student puts out the appropriate number 

output cards on the opposite side of the box. The final (output) number cards are calculated by following the 

operation on the front of the robot (see diagram below).  

 
 START END 

This is represented by arrowmath notation as a change; for example: 6
   +2   
→   8 

The question is asked, What if you get 10 at the end? What was put in at the start? Most students will be able to 

say 8 with support and most classes will be able to say that to “go backwards” requires subtracting 2 (after 

discussion and examples). In arrowmath notation, this reversal of the operation can be represented as a change 

in the reverse direction (which inverts the operation), for example: 

 6
   +2   
→   8  6

   −2   
←   8 

Multiple operations can be handled by two function machine robots:  

 

This enables inverses of sequences of operations to be studied: 

 Forward: 5 
   ×   3
→    15 

   −2   
→    13 

 Backward: 5 
   ÷3   
←    15 

   +2   
←    13  (inverse) 

In practice, it is effective to actually walk students forward past the function machine from left to right and 

backward from right to left, verbalising each function as they walk past. This process assists students with 

grasping change and reversals. The construction of function machines can be novel and may appeal to students’ 

imaginations; using a large enough box so that a “wheel” can be attached, a student can turn the “wheel” to 

indicate something is happening, with another student sitting inside as the “machine” to indicate something is 

going to come out, thus showing change.  

Number line 

In this method, the teacher shows a number line (numbered) and 

discusses what happens as we move back and forth along the line. 

Says, We are at 7, 2 is added, how do we get back to 7?, and acts this 

out along the line showing inverse (as on right). Then, the teacher 

moves onto an unnumbered line. The teacher says, Your Dad gives 

you money and you spend $8, what has to happen to get back to the 

+ 2

INPUT OUTPUT6 8

×3

5

- 2

15 13

 
Inverse 



 

Page 100     Appendices VERSION 3, 20/09/16 © QUT YuMi Deadly Centre 2014 

same amount of money you were given? Students act this out on the number line with 𝑛 as the letter signifying 

the money that Dad gave. Teacher discusses how to get back to 𝑛. [Find someone to give you $8.] It shows that 

+8 is the inverse of −8.  

If the number line is made “mathematical” so that all 

operations are possible, then we can use the line to do 

sequences of inverses.  

(Note: for younger students inverses for + and − can 

be “walked” on a number track, e.g. 3 goes to 7 by +4 

and then 7 goes back to 3 by −4, as on right.)  

 

Applying the inverse principle 

Once a learner has an understanding of inverse, it can be applied to particular mathematics topics. The important 

point here is that this one piece of knowledge, the knowledge of inverse, because it is general and across topics, 

can be used to understand and solve problems in a number of different topics. Separate rules or algorithms do 

not have to be taught for each topic because the inverse knowledge is enough. It is important to realise that the 

models used to teach the inverse principle also play an important role in the applications. Some examples of 

inverse applications are as follows. 

Basic subtraction facts 

If addition facts (e.g. 8 + 5 = 13) are known, inverse can be applied to calculate the subtraction facts (e.g. 13 – 8 

= 5). This is based on subtraction being the inverse of addition and using this to rethink 

subtraction in terms of addition (and, therefore, using our addition facts to calculate 

the subtraction facts). For example, using function machines and arrowmath notation, 

13 − 8 can be thought of as on right (13 being changed by −8):  

While, reversing the notation, the inverse is as on right (8 being added to something 

to make 13): 

Similarly, on a number line (see below), 13 – 8 is as follows in terms of inverse. 

 

From both of these models, 13 – 8 = ? can be seen as the same as ? + 8 = 13 (or “what plus 8 equals 13”). Thus, 

13 − 8 can be calculated using the already known addition fact, 5 + 8 = 13. This means 13 – 8 = 5. Thus we have a 

strategy for solving subtraction facts which comes from the inverse big idea; it is called the “think addition” strategy.  

Subtraction computation 

Once students have learnt addition computation, inverse can be used in two ways in subtraction. The first is to 

check the subtraction as below.  

   Subtraction:      52  Check by addition:      25 

       −27        +27 

         25          52 

(This method can also be used to check additions, by using subtraction; multiplications by using division; and 

divisions, by using multiplication).  

1 2 3 4 5 6 7 8 9 

?
+ 8

13

13
- 8

?

+4 

-4 
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The second way is as a method that uses addition to do subtraction computations. It is best seen with the number 

line model. To do the method, students have to “think addition” (similar to basic facts) and solve subtractions 

such as 52 − 27 by thinking “what has to be added 

to 27 to make 52”. This can be solved using an 

alternative jump method where you start from 27 

and determine what jumps will get to 52, as in the 

diagram on right. The answer is 3 + 10 + 10 + 2 = 25.  

This additive subtraction method is also useful for subtracting money (e.g. working out change), mixed numbers, 

decimal numbers, and measures (time and length).  

Solutions of linear equations 

Situations like I bought $3 pies for all of my friends and a $7 roll. I spend $25. How many friends?, can be 

considered in terms of change, can be acted out on ×3 and +7 function machines, and can be represented by 

arrowmath notation and an equation, for example: 

? 
    ×3    
→     

    +7    
→     25  3𝑥 + 7 = 25 

The inverse or backtracking method that is part of learning inverse on function machines can be used to solve 

the problem. Since the change is ×3 and +7, it is reversed by −7 and ÷3. This reversing or backtracking provides 

the answer, for example:  

    3𝑥 + 7 = 25    3𝑥 = 25 − 7 = 18    𝑥 = 18 ÷ 3 = 6 

Solving % problems 

Situations like, I paid a 40% down payment of $120 on the dress, how much was the dress? can also be thought 

of as change and solved by reversing, or finding the inverse of, the change. Both the function machine and 

number-line models can assist here and the use of each is given as follows. 

Function machine or change model. The problem can be considered as a function machine that changes the cost 

of a dress to 40% of that cost, that is, that multiplies original cost by 0.4. This can be represented by an arrowmath 

diagram and solved by reversing or backtracking, as follows. The original cost of the dress is therefore found by 

dividing the 40% cost by 0.4, i.e. cost = $120 ÷ 0.4 = $300.  

 

Double number-line model. The problem can also be considered as a change on a line. An excellent way to do 

this is to consider the line as having two sides (this is called a double number line) – one side as % and the other 

as $. In this situation, the 100% changes to 40% while the original cost changes to $120. The change on both sides 

is the same. From 100% to 40%, the change is to multiply by 0.4, so to go the other way, or undo the change, is 

to divide by 0.4. This means that the original cost (the ? in the diagram) is $120 ÷ 0.4 = $300.  

 

Solving rate problems 

For problems like, I bought the petrol for $1.40 per litre, how much petrol did I buy for $63?, both the function 

machine and number-line models again apply.  

 % 40%  ×0.4 

 ÷0.4 

100% 

? $120 $ 
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Function machine or change model. Once again, the problem is considered as change, but change from litres to 

dollars by multiplying by the rate of change (i.e. × 1.40), for example:  

     Litres of petrol  money in $ 

Thus, we use the arrowmath notation to set up the change and use the inverse (i.e. ÷ 1.4) to solve it: 

          ?  L $63 

 

By using inverse or backtracking in this way, the number of litres is ? = 63 ÷ 1.4 = 45 L. 

Double number-line model. Once again, we can use the double number line with one side L (litres) and the other 

side $ (dollars). In this situation, 1 L is $1.40 so the line becomes as below. To get from $1.40 to $63 is to multiply 

by 63 and divide by 1.4. Thus, the number of litres of fuel is ? = 1 × 63 ÷ 1.4 = 45 L. 

L     1        × 63 ÷ 1.4           ? 

 

$   1.40         × 63 ÷ 1.4         63 

Overall, learning the inverse principle enables you to solve many problems in many areas of mathematics. The 

big idea, inverse, enables a whole collection of what is often seen as distinct mathematics situations to all be 

solved with the one idea.  

It should also be noted that the five applications above are only a few of the uses of inverse. It is also useful for 

ratio, measurement (metric conversion), currency conversion, and scale problems. 

 

× 1.40  
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